scholarly journals Drying of the Natural Fibers as A Solvent-Free Way to Improve the Cellulose-Filled Polymer Composite Performance

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 484 ◽  
Author(s):  
Stefan Cichosz ◽  
Anna Masek

When considering cellulose (UFC100) modification, most of the processes employ various solvents in the role of the reaction environment. The following article addresses a solvent-free method, thermal drying, which causes a moisture content decrease in cellulose fibers. Herein, the moisture content in UFC100 was analyzed with spectroscopic methods, thermogravimetric analysis, and differential scanning calorimetry. During water desorption, a moisture content drop from approximately 6% to 1% was evidenced. Moreover, drying may bring about a specific variation in cellulose’s chemical structure. These changes affected the cellulose-filled polymer composite’s properties, e.g., an increase in tensile strength from 17 MPa for the not-dried UFC100 to approximately 30 MPa (dried cellulose; 24 h, 100 °C) was observed. Furthermore, the obtained tensile test results were in good correspondence with Payne effect values, which changed from 0.82 MPa (not-dried UFC100) to 1.21 MPa (dried fibers). This raise proves the reinforcing nature of dried UFC100, as the Payne effect is dependent on the filler structure’s development within a polymer matrix. This finding paves new opportunities for natural fiber applications in polymer composites by enabling a solvent-free and efficient cellulose modification approach that fulfils the sustainable development rules.

2021 ◽  
pp. 204124792110087
Author(s):  
Mohammed Awwalu Usman ◽  
Ibrahim Momohjimoh ◽  
Abdulhafiz Onimisi Usman

Natural fibers are becoming the right candidate material as a substitute for glass fibers in the reinforcement of plastic polymers for various applications. The ease of their processing with minimal energy consumption and the quest to produce biodegradable plastics with lightweight has given natural fibers comparative advantages over synthetic fibers. In this study, groundnut shell powder (GSP) in different forms (untreated, sodium hydroxide treated and ash) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray fluorescence (XRF), Nuclear magnetic resonance (NMR), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) to evaluate their possible utilization as reinforcement in polymers. GSP was treated with sodium hydroxide for 5 hrs and dried in vacuum for 24 hrs to obtain treated GSP while ash GSP was formed by heating GSP in the furnace at 600 °C for about 3 hrs. The results reveal that sodium hydroxide treatment was very effective in the breaking down of the hydrogen bond with a consequent reduction in the hydrophilicity of the GSP. This would promote GSP bonding with the hydrophobic polymer matrix in the development of natural fiber reinforced plastic polymer composite materials. Ash GSP was found to have the highest crystallinity among the three forms of GSP based on XRD results. Therefore, the result achieved in this work confirmed that treated and ash GSP fibers are good reinforcement material in the production of polymer composites, with the actual choice depending on end-use property requirements of the composite.


2019 ◽  
Vol 809 ◽  
pp. 433-438 ◽  
Author(s):  
Natalie Vellguth ◽  
Tanja Rudeck ◽  
Madina Shamsuyeva ◽  
Franz Renz ◽  
Hans Josef Endres

An effective integration of natural fibers into engineering thermoplastics requires sufficient thermal stability of natural fibers during processing, since melting temperature of engineering thermoplastics lies above 200 °C. The aim of the work was to protect natural fibers from the heat of the molten thermoplastic via coating with a modified epoxy resin, thus enabling manufacture of natural fiber-reinforced engineering thermoplastic composites with minimized thermal degradation of the fibers. Processing temperature comprised the range of engineering thermoplastic polyamide 6 (PA6), which was 225 °C. Flax fabrics were spray coated with partially bio-based epoxy resin and incorporated via hot press technique into a PA6 matrix. The composite samples including spray coated flax fibers as well as the reference flax fibers without coating were characterized with regard to their mechanical properties, namely bending and tensile tests, thermal properties with differential scanning calorimetry (DSC) as well as thermogravimetric analysis (TGA) and optical via scanning electron microscopy (SEM) and computer tomography (CT). The results show that this approach enables manufacture of composites with reproducible mechanical properties, i.e. bending and tensile properties as well as enhanced thermal stabilities.


2015 ◽  
Vol 2015 ◽  
pp. 1-32 ◽  
Author(s):  
Reza Arjmandi ◽  
Azman Hassan ◽  
Khaliq Majeed ◽  
Zainoha Zakaria

Natural fibers from agricultural wastes are finding their importance in the polymer industry due to the many advantages such as their light weight, low cost and being environmentally friendly. Rice husk (RH) is a natural sheath that forms around rice grains during their growth. As a type of natural fiber obtained from agroindustrial waste, RH can be used as filler in composites materials in various polymer matrices. This review paper is aimed at highlighting previous works of RH filled polymer composites to provide information for applications and further research in this area. Based on the information gathered, application of RH filled composites as alternative materials in building and construction is highly plausible with both light weight and low cost being their main driving forces. However, further investigations on physical and chemical treatment to further improve the interfacial adhesion with polymeric matrix are needed as fiber-polymer interaction is crucial in determining the final composite properties. Better understanding on how the used polymer blends as the matrix and secondary fillers may affect the properties would provide interesting areas to be explored.


Author(s):  
Tanvir Mahady Dip ◽  
Prof. Dr. Hosne Ara Begum ◽  
Md. Abdullah Al Hossain ◽  
Md. Mazbah Uddin ◽  
Md. Omar Faruque

The cardinal objective of blending is to combine fibers which emphasizes good quality and minimizes poor quality. Jute is a natural fiber popularly known as the golden fiber of Bangladesh. It is one of the cheapest and strongest natural fibers and is considered the fiber for the future. Polyester is a manufactured product which tends to be very resilient, quick drying, resistant to biological damage such as mold and mildew, easy to wash and able to hold forms well. Although polyester is often maligned as a textile, it has many useful applications. The following study is an experimental research on how blending of Polyester with Jute behaves a single yarn manufactured using jute yarn manufacturing machineries. Tossa Jute of B grade and Polyester of 1.4 Denier & 32 mm staple length were chosen for the blending. The blending was performed at the 2nd Draw Frame stage of jute manufacturing system and blending ratio of jute and polyester fibers is 80:20. Count of Jute blended sliver and yarn after each stage was measured and recorded. The present work is concerned with the investigation of physical properties of manufactured jute blended yarns. Tests were conducted on blended yarn to find out Count, Twist per Inch (TPI), Strength, Quality Ratio Moisture Regain, Moisture Content, Hairiness, Percentage of Fibers in the final blended yarn etc.


2011 ◽  
Vol 264-265 ◽  
pp. 1922-1927 ◽  
Author(s):  
S.K. Shaha ◽  
S. Dyuti ◽  
Qumrul Ahsan ◽  
Mahbub Hasan

Due to the environmental issue, natural fibers are day by day becoming attractive to researchers. Natural fiber contains cellulose, hemicelluloses, lignin etc, which are hygroscopic in nature and biodegradable. The lack of surface feature diminishes its properties. So, the surface properties of the jute yarns need to be modified. In the present study, jute yarns were cleaned using 2% detergent and chemically modified by 5, 15 and 25% NaOH solution both at room temperature and 700C for 2 hours and dried in air. The structural and morphological studies of the treated and untreated yarns were carried out using Fourier transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM). The thermal and mechanical behaviour of the yarns were analyzed using Differential scanning calorimetry (DSC) and Instron Universal testing machine. The results show the improvement in mechanical strength of the yarns due to the change in crystalinity after alkali treatment. Also, the thermal decomposition temperature of raw jute yarns decreased from 357.30C to 349.60 C after alkali treatment.


2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taslima Ahmed Tamanna ◽  
Shah Alimuzzaman Belal ◽  
Mohammad Abul Hasan Shibly ◽  
Ayub Nabi Khan

AbstractThis study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer’s equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young’s modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2220
Author(s):  
Zaida Ortega ◽  
Francisco Romero ◽  
Rubén Paz ◽  
Luis Suárez ◽  
Antonio Nizardo Benítez ◽  
...  

This paper compares the mechanical properties of different natural fiber composites produced by rotational molding as a way of waste valorization from campaigns to control invasive plant species in Macaronesia. Rotomolded parts produced with polymeric matrices (polyethylene) and filled with up to 20% by weight of cellulosic fibers obtained from Arundo donax L., Pennisetum setaceum, and Ricinus communis plants were characterized in terms of tensile, flexural, and impact strength. It was found that the sieving of natural fibers allowed for their introduction in higher loadings, from 10 (for un-sieved material) to 20%; fiber size greatly affected the mechanical properties of the final parts, although some combinations were proven not to reduce the mechanical properties of the neat resin. This study is a first approach to the valorization of residues obtained from periodic campaigns of the control of invasive species performed by public authorities, usually at the local level. It is important to highlight that the main objective of this research did not focus on economically profitable activity; instead, it was focused on the reduction of wastes to be disposed from ecosystem maintenance actions and the investment of potential income into preservation policies.


2021 ◽  
Vol 8 (5) ◽  
pp. 11-17
Author(s):  
Syed Rashedul Islam ◽  
Abeer Alassod ◽  
Mohammed Kayes Patoary ◽  
Tayyab Naveed ◽  
Md Arshad Ali ◽  
...  

In recent years, reinforced composites from biodegradable and natural fibers have a worldwide scope for advanced applications. However, the core limitation of natural fiber reinforced composites are poor consistency among supporting fibers and the matrix. Therefore, optimal structural performance of fibers and matrix is desirable. In this study, chemical treatments (i.e., alkali pretreatment, acid pretreatment, and scouring) were applied to jute fibers for improvement of composite properties. Thermal, thermo-mechanical, and flexural properties, and surface morphology, of untreated and treated jute fibers were studied on the treated fibers. Jute fiber/epoxy composite properties were analyzed by thermogravimetric analysis (TGA), flexural strength and modulus, and dynamic mechanical analysis (DMA). The chemical treatments had a significant impact on the properties of jute fiber composites.


Sign in / Sign up

Export Citation Format

Share Document