scholarly journals Effect of Off-Axis Ply on Tensile Properties of [0/θ]ns Thin Ply Laminates by Experiments and Numerical Method

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1809
Author(s):  
Junfeng Hu ◽  
Xi Deng ◽  
Xutong Zhang ◽  
Wen-Xue Wang ◽  
Terutake Matsubara

The effect of off-axis ply on the tensile properties of unbalanced symmetric [0/θ]ns laminates was explored through experimental and numerical analysis. Six CFRP [0/θ]2s plies with different off-axis angles θ were fabricated for tensile tests. In situ observations of the damage to the laminates were conducted to investigate the initiation and progressive growth of the laminates during the tension tests. The fiber fractures, crack initiation, and progressive propagation were analyzed by observing the free edge of the laminates, and the difference in damage behavior caused by different off-axis angles was investigated. All the six [0/θ]2s plies with off-axis angles θ ranging from 15° to 90° showed approximate linear stress–strain responses in the tensile tests. Matrix cracks were not observed prior to the final catastrophic failure in the off-axis layers of the [0/θ]2s laminates with a θ in the range of 15–60°. Finite element analysis (FEA) of the [0/θ]s plies was conducted using a 3D micromechanical model, in which matrix cracking and fiber-matrix debonding in the off-axis layer were simulated using a cohesive interface element. Three micromechanical crack-free, cohesive interface, and initial crack models were analyzed to predict the influence of the matrix cracks inside the off-axis layer on the damage behavior of the [0/θ]s laminates. The numerical results from the initial crack micromechanical model show a lower bound of the tensile strength of the [0/θ]s plies. A high stress concentration is observed adjacent to the cracked off-axis layer, inducing a tensile strength loss of about 20%.

2011 ◽  
Vol 66-68 ◽  
pp. 1207-1212 ◽  
Author(s):  
Mohd Sayuti ◽  
Shamsuddin Sulaiman ◽  
B.T. Hang Tuah Baharudin ◽  
M.K.A.M. Arifin ◽  
T.R. Vijayaram ◽  
...  

Vibrational moulding process has a remarkable effect on the properties of castings during solidification processing of metals, alloys, and composites. This research paper discusses on the investigation of mechanical vibration mould effects on the tensile properties of titanium carbide particulate reinforced LM6 aluminium alloy composites processed with the frequencies of 10.2 Hz, 12 Hz and 14 Hz. In this experimental work, titanium carbide particulate reinforced LM6 composites were fabricated by carbon dioxide sand moulding process. The quantities of titanium carbide particulate added as reinforcement in the LM6 alloy matrix were varied from 0.2% to 2% by weight fraction. Samples taken from the castings and tensile tests were conducted to determine the tensile strength and modulus of elasticity. The results showed that tensile strength of the composites increased with an increase in the frequency of vibration and increasing titanium carbide particulate reinforcement in the LM6 alloy matrix.


2013 ◽  
Vol 209 ◽  
pp. 6-9 ◽  
Author(s):  
Rajendra Doiphode ◽  
S.V.S. Narayana Murty ◽  
Nityanand Prabhu ◽  
Bhagwati Prasad Kashyap

Mg-3Al-1Zn (AZ31) alloy was caliber rolled at 250, 300, 350, 400 and 450 °C. The effects of caliber rolling temperature on the microstructure and tensile properties were investigated. The room temperature tensile tests were carried out to failure at a strain rate of 1 x 10-4s-1. The nature of stress-strain curves obtained was found to vary with the temperature employed in caliber rolling. The yield strength and tensile strength followed a sinusoidal behaviour with increasing caliber rolling temperature but no such trend was noted in ductility. These variations in tensile properties were explained by the varying grain sizes obtained as a function of caliber rolling temperature.


2012 ◽  
Vol 7 (4) ◽  
pp. 155892501200700 ◽  
Author(s):  
Saravanan Kannappan ◽  
Bhaarathi Dhurai

The effect of temperature, pressure, and time on the tensile strength of jute fiber composite has been studied. The process of preparing the composite specimens is discussed. The best tensile properties were observed if the composite board is manufactured using high pressure and moderate temperature. For tensile strength, the time does not play a significant role. The study identifies the principal experimental pressure variables, which have the greatest effect on the tensile strength of the composite. The composite boards were subjected to tensile tests and the fractured surfaces were observed under SEM. The SEM photomicrographs of the fractured surfaces of the composite board show diverse extents of fiber pull-outs under tensile failure. The tensile strength values are in good concurrence with predicted values and were found have a correlation coefficient of 96%.


2011 ◽  
Vol 299-300 ◽  
pp. 460-465 ◽  
Author(s):  
Li Zhang ◽  
Xiu Ping Dong ◽  
Hao Chen

By designing different formulations of composites and adopting optimized technology including extrusion and molding, the different composites with various content microcapsules were prepared. The results of the tensile tests show that with the increasing content of self-healing microcapsules in the glass fiber reinforced nylon composites, the mechanical properties of the composites will change, i.e. tensile strength, elastic modulus will decrease. But there is little effect on the mechanical properties of the composite gears if the content of self-healing microcapsules is less than 3.5%, and the technology of self-healing microcapsules used in the polymer composite gear is feasible.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1401 ◽  
Author(s):  
Bazli ◽  
Ashrafi ◽  
Jafari ◽  
Zhao ◽  
Raman ◽  
...  

The present study indicates the importance of using glass fiber reinforced polymer (GFRP) laminates with appropriate thickness and fibers orientation when exposed to harsh environmental conditions. The effect of different environmental conditions on tensile properties of different GFRP laminates is investigated. Laminates were exposed to three environmental conditions: (1) Freeze/thaw cycles without the presence of moisture, (2) freeze/thaw cycles with the presence of moisture and (3) UV radiation and water vapor condensation cycles. The effect of fiber configuration and laminate thickness were investigated by considering three types of fiber arrangement: (1) Continuous unidirectional, (2) continuous woven and (3) chopped strand mat and two thicknesses (2 and 5 mm). Microstructure and tensile properties of the laminates after exposure to different periods of conditioning (0, 750, 1250 and 2000 h) were studied using SEM and tensile tests. Statistical analyses were used to quantify the obtained results and propose prediction models. The results showed that the condition comprising UV radiation and moisture condition was the most aggressive, while dry freeze/thaw environment was the least. Furthermore, the laminates with chopped strand mat and continuous unidirectional fibers respectively experienced the highest and the lowest reductions properties in all environmental conditions. The maximum reductions in tensile strength for chopped strand mat laminates were about 7%, 32%, and 42% in the dry freeze/thaw, wet freeze/thaw and UV with moisture environments, respectively. The corresponding decreases in the tensile strength for unidirectional laminates were negligible, 17% and 23%, whereas those for the woven laminates were and 7%, 24%, and 34%.


2021 ◽  
Vol 2080 (1) ◽  
pp. 012012
Author(s):  
MH Zulkifli ◽  
MSM Rasidi ◽  
NAM Rahim ◽  
L Musa ◽  
Abdul Hakim Masa

Abstract In this study, recycled ethylene propylene diene monomer (EPDM-r) were blended with polypropylene (PP) by compounding via heated two roll mills with the various ratio of EPDM-r. Certain blends were included with PP-g-MA as a compatibilizer. In tensile tests, the increasing of EPDM-r content in blends resulted in the reduction of tensile strength and Young’s Modulus but increased elongation at break. Furthermore, the presence of compatibilizer in blends enhanced the tensile properties. It was found all the samples with compatibilizer performs better results in tensile strength, Young’s Modulus, and elongation at break than samples without compatibilizer. On the other hand, the aging affected were studied on compatibilized and uncompatibilized blends. It was found that aging affects the samples by decreasing the tensile strength, Young’s Modulus, and elongation at break. The crosslink density had been found higher in the blends with high EPDM-r content as the EPDM-r had the ability to swell. The morphological study related to the structure with the tensile properties. It was confirmed that the presence of a compatibilizer increased the compatibility between EPDM-r and PP matrix.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2290 ◽  
Author(s):  
Qi Li ◽  
Weijie Liu

Effect of boron on the hot ductility and room-temperature tensile properties of Ti-Nb-microalloyed steels containing 0.071 wt.% carbon was studied. The thermal stress and thermal strain of continuous casting billets during cooling were simulated via hot tensile tests at the deformation rate of (6 mm/11,000)/s, and the hot ductility of different microalloyed steels was evaluated according to the area reduction of hot tensile specimens. It was found that boron addition was beneficial to improve the hot ductility of continuous casting billets during straightening, and the reduction of area exceeded 60%. The addition of boron, as well as the removal of molybdenum and vanadium, can effectively lower the austenite-to-ferrite transformation temperature and restrain the formation of intergranular ferrite, so as to avoid the brittle zone. Moreover, the room-temperature tensile properties of the steels were explored at different cooling rates after the rolling process. The results showed that as the cooling rate increased from 0.0094 to 0.13 °C/s, the amount of carbonitride precipitate gradually decreased, such as titanium carbide, leading to the relatively low tensile strength. On the other hand, the addition of boron, as well as the removal of Mo and V, promoted the formation of bainite and acicular ferrite, playing an important role in structure strengthening, and compensated for the decrease of tensile strength caused by the low precipitation strengthening.


2011 ◽  
Vol 471-472 ◽  
pp. 727-732 ◽  
Author(s):  
Mohd Sayuti ◽  
Shamsuddin Sulaiman ◽  
B.T. Hang Tuah Baharudin ◽  
Mohd Khairol A. Arifin ◽  
T.R. Vijayaram ◽  
...  

This paper describes an experimental investigation of the tensile properties of quartz-silicon dioxide particulate reinforced LM6 aluminium alloy composite. In this experimental, quartz-silicon dioxide particulate reinforced LM6 composite were fabricated by carbon dioxide sand moulding process with variation of the particulate content on percentage of weight. Tensile tests were conducted to determine tensile strength and modulus of elasticity followed by fracture surface analysis using scanning electron microscope to characterize the morphological aspects of the test samples after tensile testing. The results show that the tensile strength of the composites decreased with increasing of quartz particulate content. In addition, this research article is well featured by the particulate-matrix bonding and interface studies which have been conducted to understand the processed composite materials mechanical behaviour. It was well supported by the fractographs taken using the scanning electron microscope (SEM). The composition of SiO2 particulate in composite was increased as shown in EDX Spectrum and Fractograph.


2013 ◽  
Vol 750 ◽  
pp. 208-211
Author(s):  
Hang Li ◽  
Wen Xue Wang ◽  
Yoshihiro Takao ◽  
Terutake Matsubara

This study investigates the tensile properties of UACS (unidirectional arrayed chopped strands) laminates with different slit patterns. UACS composite is a kind of short fiber reinforced polymer by introducing slits into prepregs before the fabrication of laminates. Existing UACS composites have superior flowability but relatively low tensile strength compared to conventional CFRP (carbon fiber reinforced polymer). Consequently, many efforts have been made to improve the strength of UACS composites. In this study, two new discontinuous slit patterns, staggered pattern and bi-angled pattern, have been developed. Tensile tests reveal that two new UACS laminates with staggered and bi-angled slit patterns have higher strength and higher stiffness than existing UACS laminates with continuous slits. Discontinuity of slits plays an important role in inhibiting the development of delamination. Different slit patterns show different failure modes.


2014 ◽  
Vol 217-218 ◽  
pp. 91-98
Author(s):  
Mohd Shukor Salleh ◽  
Mohd Zaidi Omar ◽  
Junaidi Syarif ◽  
K.S. Alhawari ◽  
M.N. Mohammed

In this study, the effects of copper content on the microstructures and tensile properties of thixoformed Al-5Si-xCu-0.5Fe (x =1.0, 2.0 and 3.0 wt. %) were investigated. For this study, three different alloys having various amounts of copper were prepared using cooling slope casting before thixoforming. The semi-solid liquid range for the alloys were estimated using the diffrential scanning calorimetry (DSC) analysis. The samples were thixoformed at 40% liquid fraction. Some of these samples were treated with a T6 aging process. The thixoformed and thixoformed T6 samples were then characterized by optical microscopy, scanning electron microscope (SEM) and energy dispersive X-ray (EDX) as well as tensile tests. The different phases formed in the thixoformed and thixoformed T6 samples were throughly investigated.The results indicate that as copper content increases, the tensile strength also increases, which might due to precipitation hardening. The thixoformed T6 alloys attained an ultimate tensile strength (UTS) as high as 303 MPa when Cu content is 3 wt%.


Sign in / Sign up

Export Citation Format

Share Document