scholarly journals The Influence of Self-Heating Iron on the Thermal, Mechanical, and Swelling Properties of PDMS Composites for Organic Solvents Removal

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4231
Author(s):  
Mohamed S. A. Darwish ◽  
Laila M. Al-Harbi

Volatile organic compounds pollute the environment and pose a serious threat to human health due to their toxicity, mutagenicity, and carcinogenicity. In this context, it is highly desirable to fabricate high-performance poly (dimethylsiloxane) (PDMS) composites to remove organic solvents from the environment using a simple technique. Therefore, in the present study, Fe-PDMS composites were fabricated using a technique based on magnetic induction heating with iron particles serving as a self-heating agent. Under an alternating magnetic field, the iron particles served as a thermal source that assisted in the progression of PDMS crosslinking. The influence of self-heating iron on the properties of the fabricated Fe-PDMS composites was also investigated. The hydrosilation reaction occurring during the crosslinking process was controlled using FT-IR. The heating efficiency of PDMS 1, PDMS 2, and PDMS 3 was studied as the function of induction time (0–5 min) and the function of iron content (0%, 1%, and 30% wt.%). The results revealed that the mechanical properties of the PDMS 2 composite were enhanced compared to those of the PDMS 1 and PDMS 3 composites. The mechanical properties of PDMS 3 were the least efficient due to cluster formation. PDMS 3 exhibited the highest thermal stability among all composites. Furthermore, the swelling behavior of different materials in various organic solvents was studied. PDMS was observed to swell to the greatest extent in chloroform, while swelling to a large extent was observed in toluene, pentane, and petroleum ether. PDMS swelling was the least in n-butanol. The elastomeric behavior of crosslinked PDMS, together with its magnetic character, produces stimuli-responsive magneto-rheological composites, which are quite efficient and suitable for applications involving the removal of organic solvents.

2016 ◽  
Vol 717 ◽  
pp. 9-13
Author(s):  
Jun Mei Cheng ◽  
Shu Gao Zhao

An attempt has been undertaken to assess the effect of RP-3 jet fuel and 4109 lubricant on the mechanical, swelling properties and compression set of two kinds of fluorosilicone rubber (FSR) which are self-made and provided by Dow corning, and are marked as FSR A and FSR B respectively. Results showed that FSR B has better chemical resistance and comparable mechanical properties with that of FSR A, and are promising candidates for the development of high performance sealing materials.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


PCI Journal ◽  
2008 ◽  
Vol 53 (4) ◽  
pp. 108-130
Author(s):  
Mohsen A. Issa ◽  
Atef A. Khalil ◽  
Shahidul Islam ◽  
Paul D. Krauss

Alloy Digest ◽  
1952 ◽  
Vol 1 (3) ◽  

Abstract Berylco 25S alloy is the high-performance beryllium-copper spring material of 2 percent nominal beryllium content. It responds to precipitation-hardening for maximum mechanical properties. It has high elastic and endurance strength, good electrical and thermal conductivity, excellent resistance to wear and corrosion, high corrosion-fatigue strength, good resistance to moderately elevated temperatures, and no embrittlement or loss of normal ductility at subzero temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-3. Producer or source: Beryllium Corporation.


2012 ◽  
Vol 85 (1) ◽  
pp. 120-131 ◽  
Author(s):  
Md. Najib Alam ◽  
Swapan Kumar Mandal ◽  
Subhas Chandra Debnath

Abstract Several zinc dithiocarbamates (ZDCs) as accelerator derived from safe amine has been exclusively studied in the presence of thiazole-based accelerators to introduce safe dithiocarbamate in the vulcanization of natural rubber. Comparison has been made between conventional unsafe zinc dimethyldithiocarbamate (ZDMC) with safe novel ZDC combined with thizole-based accelerators in the light of mechanical properties. The study reveals that thiuram disulfide and 2-mercaptobenzothiazole (MBT) are always formed from the reaction either between ZDC and dibenzothiazyledisulfide (MBTS) or between ZDC and N-cyclohexyl-2-benzothiazole sulfenamide (CBS). It has been conclusively proved that MBT generated from MBTS or CBS reacts with ZDC and produces tetramethylthiuram disulfide. The observed synergistic activity has been discussed based on the cure and physical data and explained through the results based on high-performance liquid chromatography and a reaction mechanism. Synergistic activity is observed in all binary systems studied. The highest tensile strength is observed in the zinc (N-benzyl piperazino) dithiocarbamate-accelerated system at 3:6 mM ratios. In respect of tensile strength and modulus value, unsafe ZDMC can be successfully replaced by safe ZDCs in combination with thiazole group containing accelerator.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


2021 ◽  
Vol 2 (3) ◽  
pp. 501-515
Author(s):  
Rajib Kumar Biswas ◽  
Farabi Bin Ahmed ◽  
Md. Ehsanul Haque ◽  
Afra Anam Provasha ◽  
Zahid Hasan ◽  
...  

Steel fibers and their aspect ratios are important parameters that have significant influence on the mechanical properties of ultrahigh-performance fiber-reinforced concrete (UHPFRC). Steel fiber dosage also significantly contributes to the initial manufacturing cost of UHPFRC. This study presents a comprehensive literature review of the effects of steel fiber percentages and aspect ratios on the setting time, workability, and mechanical properties of UHPFRC. It was evident that (1) an increase in steel fiber dosage and aspect ratio negatively impacted workability, owing to the interlocking between fibers; (2) compressive strength was positively influenced by the steel fiber dosage and aspect ratio; and (3) a faster loading rate significantly improved the mechanical properties. There were also some shortcomings in the measurement method for setting time. Lastly, this research highlights current issues for future research. The findings of the study are useful for practicing engineers to understand the distinctive characteristics of UHPFRC.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Jiayuan He ◽  
Weizhen Chen ◽  
Boshan Zhang ◽  
Jiangjiang Yu ◽  
Hang Liu

Due to the sharp and corrosion-prone features of steel fibers, there is a demand for ultra-high-performance concrete (UHPC) reinforced with nonmetallic fibers. In this paper, glass fiber (GF) and the high-performance polypropylene (HPP) fiber were selected to prepare UHPC, and the effects of different fibers on the compressive, tensile and bending properties of UHPC were investigated, experimentally and numerically. Then, the damage evolution of UHPC was further studied numerically, adopting the concrete damaged plasticity (CDP) model. The difference between the simulation values and experimental values was within 5.0%, verifying the reliability of the numerical model. The results indicate that 2.0% fiber content in UHPC provides better mechanical properties. In addition, the glass fiber was more significant in strengthening the effect. Compared with HPP-UHPC, the compressive, tensile and flexural strength of GF-UHPC increased by about 20%, 30% and 40%, respectively. However, the flexural toughness indexes I5, I10 and I20 of HPP-UHPC were about 1.2, 2.0 and 3.8 times those of GF-UHPC, respectively, showing that the toughening effect of the HPP fiber is better.


Sign in / Sign up

Export Citation Format

Share Document