scholarly journals Modeling and Multi-Criteria Optimization of a Process for H2O2 Electrosynthesis

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 399
Author(s):  
Martin von Kurnatowski ◽  
Michael Bortz

This article introduces a novel laboratory-scale process for the electrochemical synthesis of hydrogen peroxide (H2O2). The process aims at an energy-efficient, decentralized production, and a mathematical optimization of it is presented. A dynamic, zero-dimensional mathematical model of the reactor is set up in Aspen custom modeler®. The proposed model constitutes a reasonable compromise between complexity and convergence. After thoroughly determining the reaction kinetics by adjustment to experimental data, the reactor unit is embedded in an Aspen Plus® flowsheet in order to investigate its interaction with other unit operations. The downstream contains another custom module for membrane distillation. Electricity appears as a resource in the process, and optimization shows that it reaches product purities of up to 3 wt.-%. Both the process optimization and the adjustment of the reaction kinetics are treated as multi-criteria optimization (MCO) problems.

Author(s):  
Saikat Sahoo ◽  
Dilip Kumar Pratihar ◽  
Sudipta Mukhopadhyay

A powered ankle prosthesis has the ability to replace a biological ankle, also it can remove the difficulties faced due to the usage of passive ankle prosthesis. However, the energy consumption of the set-up, weight and portability of the motor, and its electronics are still the issues to be addressed. This study is solely focused on the reduction of power consumption of the motor during the stance phase of locomotion. Thus, a compliant actuator controlled by the four-bar mechanism with a special rocker arrangement is proposed, which eventually can reduce the power consumption by a significant amount. The reduction of power consumption not only expands the run time, but also reduces the weight and cost of the prosthesis indirectly. An optimization problem is also formulated to optimize the links’ lengths and spring stiffness in order to mimic the behavior of a normal ankle joint and solved using a genetic algorithm. Finally, the analytical and simulation results of the proposed model in terms of energy consumption and required peak motor power are compared with that of some renowned powered ankle prosthesis developed using the widely used screw transmission mechanism, a popular compliance actuation technique and an existing four-bar mechanism.


Author(s):  
D. Reiser ◽  
A. von Keudell ◽  
T. Urbanietz

AbstractEven for processes with only a few gas species involved the detailed description of plasma-assisted conversion processes in gas mixtures requires a large amount of processes to be taken into account and a large number of neutral and charged particles must be considered. In addition, setting up the corresponding reaction kinetics model needs the knowledge of the rate coefficients and their temperature dependence for all possible reactions between those species. Reduced reaction networks offer a simplified and pragmatic way to obtain an overall reaction kinetics model, already useful for the analysis of experimental data even if not all details of chemistry can be covered. In this paper we present a derivation of a data driven reduced model for plasma-assisted conversion of methane in an helium environment. By consideration of a small number of elementary reactions, a simple model is set up. Experimental data are analyzed by a genetic algorithm that provides best-fit approximations for the open parameters of the model. In a further step non-relevant parameters of the model are identified and a further model reduction is achieved. The data driven analysis of methane conversion serves as an illustrative example of the proposed method. The parameters and reaction channels found are compared with known results from the literature. The method is described in detail. The main goal of this work is to present the potential of this data driven method for a simplified and pragmatic modeling in the increasingly important field of plasma-assisted catalytic processes.


2020 ◽  
Vol 17 (6) ◽  
pp. 511-522 ◽  
Author(s):  
Alicia Graciela Cid ◽  
María Verónica Ramírez-Rigo ◽  
María Celeste Palena ◽  
Elio Emilio Gonzo ◽  
Alvaro Federico Jimenez-Kairuz ◽  
...  

Background: Mathematical modeling in modified drug release is an important tool that allows predicting the release rate of drugs in their surrounding environment and elucidates the transport mechanisms involved in the process. Objective: The aim of this work was to develop a mathematical model that allows evaluating the release profile of drugs from polymeric carriers in which the swelling phenomenon is present. Methods: Swellable matrices based on ionic complexes of alginic acid or carboxymethylcellulose with ciprofloxacin were prepared and the effect of adding the polymer sodium salt on the swelling process and the drug release was evaluated. Experimental data from the ciprofloxacin release profiles were mathematically adjusted, considering the mechanisms involved in each stage of the release process. Results: A proposed model, named “Dual Release” model, was able to properly fit the experimental data of matrices presenting the swelling phenomenon, characterized by an inflection point in their release profile. This entails applying the extended model of Korsmeyer-Peppas to estimate the percentage of drug released from the first experimental point up to the inflection point and then a model called Lumped until the final time, allowing to adequately represent the complete range of the drug release profile. Different parameters of pharmaceutical relevance were calculated using the proposed model to compare the profiles of the studied matrices. Conclusion: The “Dual Release” model proposed in this article can be used to predict the behavior of complex systems in which different mechanisms are involved in the release process.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4846
Author(s):  
Dušan Marković ◽  
Dejan Vujičić ◽  
Snežana Tanasković ◽  
Borislav Đorđević ◽  
Siniša Ranđić ◽  
...  

The appearance of pest insects can lead to a loss in yield if farmers do not respond in a timely manner to suppress their spread. Occurrences and numbers of insects can be monitored through insect traps, which include their permanent touring and checking of their condition. Another more efficient way is to set up sensor devices with a camera at the traps that will photograph the traps and forward the images to the Internet, where the pest insect’s appearance will be predicted by image analysis. Weather conditions, temperature and relative humidity are the parameters that affect the appearance of some pests, such as Helicoverpa armigera. This paper presents a model of machine learning that can predict the appearance of insects during a season on a daily basis, taking into account the air temperature and relative humidity. Several machine learning algorithms for classification were applied and their accuracy for the prediction of insect occurrence was presented (up to 76.5%). Since the data used for testing were given in chronological order according to the days when the measurement was performed, the existing model was expanded to take into account the periods of three and five days. The extended method showed better accuracy of prediction and a lower percentage of false detections. In the case of a period of five days, the accuracy of the affected detections was 86.3%, while the percentage of false detections was 11%. The proposed model of machine learning can help farmers to detect the occurrence of pests and save the time and resources needed to check the fields.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1291
Author(s):  
Giuseppe Schirripa Schirripa Spagnolo ◽  
Fabio Leccese

Nowadays, signal lights are made using light-emitting diode arrays (LEDs). These devices are extremely energy efficient and have a very long lifetime. Unfortunately, especially for yellow/amber LEDs, the intensity of the light is closely related to the junction temperature. This makes it difficult to design signal lights to be used in naval, road, railway, and aeronautical sectors, capable of fully respecting national and international regulations. Furthermore, the limitations prescribed by the standards must be respected in a wide range of temperature variations. In other words, in the signaling apparatuses, a system that varies the light intensity emitted according to the operating temperature is useful/necessary. In this paper, we propose a simple and effective solution. In order to adjust the intensity of the light emitted by the LEDs, we use an LED identical to those used to emit light as a temperature sensor. The proposed system was created and tested in the laboratory. As the same device as the ones to be controlled is used as the temperature sensor, the system is very stable and easy to set up.


Author(s):  
Wei-Song Hung ◽  
Subrahmanya T M ◽  
Po Ting Lin ◽  
Yu-Hsuan Chiao ◽  
Januar Widakdo ◽  
...  

Membrane distillation (MD) based desalination process is thought to be a promising strategy to address global challenges such as safe water-energy crisis and environmental pollution. Here, we demonstrate a novel...


Author(s):  
Adam Barylski ◽  
Mariusz Deja

Silicon wafers are the most widely used substrates for fabricating integrated circuits. A sequence of processes is needed to turn a silicon ingot into silicon wafers. One of the processes is flattening by lapping or by grinding to achieve a high degree of flatness and parallelism of the wafer [1, 2, 3]. Lapping can effectively remove or reduce the waviness induced by preceding operations [2, 4]. The main aim of this paper is to compare the simulation results with lapping experimental data obtained from the Polish producer of silicon wafers, the company Cemat Silicon from Warsaw (www.cematsil.com). Proposed model is going to be implemented by this company for the tool wear prediction. Proposed model can be applied for lapping or grinding with single or double-disc lapping kinematics [5, 6, 7]. Geometrical and kinematical relations with the simulations are presented in the work. Generated results for given workpiece diameter and for different kinematical parameters are studied using models programmed in the Matlab environment.


Author(s):  
Fakhreddine Landolsi ◽  
Fathi H. Ghorbel ◽  
James B. Dabney

AFM-based nanomanipulation is very challenging because of the complex mechanics in tip-sample interactions and the limitations in AFM visual sensing capabilities. In the present paper, we investigate the modeling of AFM-based nanomanipulation emphasizing the effects of the relevant interactions at the nanoscale. The major contribution of the present work is the use of a combined DMT-JKR interaction model in order to describe the complete collision process between the AFM tip and the sample. The coupling between the interactions and the friction at the nanoscale is emphasized. The efficacy of the proposed model to reproduce experimental data is demonstrated via numerical simulations.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


Sign in / Sign up

Export Citation Format

Share Document