scholarly journals Effects of Pulse Voltage Duration on Open–Close Dynamic Characteristics of Solenoid Screw-In Cartridge Valves

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1722
Author(s):  
Daling Yue ◽  
Linfei Li ◽  
Liejiang Wei ◽  
Zengguang Liu ◽  
Chao Liu ◽  
...  

The hydraulic high-speed on/off valve (HSV)—the critical core component of digital hydraulic technology—has a special structural design and manufacture due to its fast opening and closing, which results in high prices and maintenance costs. The solenoid screw-in cartridge valve (SCV) is widely used in the hydraulic industry because of its merits, such as mature technology, reliable quality, and low cost. The contribution of this study is to replace the high-speed on/off valve with the SCV in some areas of application by introducing positive and negative pulse voltage control for the coil of the SCV, which only modifies the control circuit and needs no change in structure. Based on the analysis of the structure of the SCV, the simulation model was developed in AMESim and validated by experiments to investigate the effects of the pulse voltage duration on the open–close dynamic characteristics and find the optimal pulse voltage duration, so that the SCV can open or close in the shortest time to reduce energy loss as far as possible. The simulation results showed that the positive and negative pulse voltage could quicken the rising or declining speed of the coil current and dramatically decrease the opening and closing delay time. By the experimental comparison with the original control method, the opening time of the SCV decreased from 30 ms to 13 ms, and the closing time was reduced from 139 ms to 14 ms.

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 634 ◽  
Author(s):  
Yang Li ◽  
Zongxia Jiao ◽  
Zimeng Wang

In order to provide a simplified and low-cost solution of the terminal for a distributed actuation system, this paper proposes an electro-hydrostatic actuator (EHA) based on the linear drive principle. The proposed actuator is directly driven by a linear pump with a collaborative rectification mechanism, whose performance relies on the collaboration of the internal two units. A pair of linear oscillating motors are employed to drive the two pump units respectively. The control of the actuator is based on the modulation of the oscillating amplitude, frequency, and phase difference of the two motors. The advantage of this actuator is that no more valve control is needed to rectify the linear pump besides the high efficiency of the direct pump drive. In this paper, both schematic and detailed structure of the actuator is presented. The kinematic and dynamic characteristics are analyzed and modeled, based on which the control method is proposed. The experiments verify the validity of the actuator structure and control.


2012 ◽  
Vol 619 ◽  
pp. 51-55
Author(s):  
Heng Chen ◽  
Yan Bing Ni

This paper deals with a control method research and trajectory planning of parallel mechanisms. Control system scheme which is based on PC and motion controller has high openness, high degree of modularization and support for non-linear mapping relationship between operating space and joint space of parallel mechanisms with high flexibility and low cost. PC and NI motion controller and LabVIEW constituted hardware core and software platform of control system, respectively. Hardware technology of control system contained hardware selection, control circuit design and interface technology; software technology of control system developed application programs layer, core control layer and drive functions layer to realize core control functions of finding home, single-step or continuous movement and micro adjustment, which was based on hardware principle. Trajectory has been planned for a typical high speed parallel robot.


Impact ◽  
2021 ◽  
Vol 2021 (5) ◽  
pp. 75-77
Author(s):  
Shinobu Sakai

Sports engineering uses mathematics and physics to develop solutions to sporting problems. It involves the design and manufacture of sports equipment and facilities that can help maximise athletic performance. In order to develop fit-for-purpose products, it is necessary to consider the motions and movements of athletes. Professor Shinobu Sakai, Production Systems Engineering and Sciences, Komatsu University, Japan, is combining AI and neural networks (NN) to develop multifunctional and high-performance sports equipment and training machines that can benefit athletes and people across the globe who play sports. Believing that machines are subordinate to human beings, a key goal for Sakai is to augment the performance of sports players through the development of tools and machines. Some of the state-of-the-art tools and methodologies he uses in his work are high-resolution sensors, laser-speed sensors, MATLAB and general finite element method analysis software (ANSYS/LS-DYNA). He has developed a shuttlecock launching machine for badminton that can launch at high speed, a high-performance baseball pitching machine that is able to generate an efficient and objective gyro spin and has a high throwing performance and a pitching control method that uses AI.


2018 ◽  
Vol 7 (3.7) ◽  
pp. 125
Author(s):  
Yeon Taek OH ◽  
. .

These days, the interests on the low-cost handling robots are increasing because it is important to get down the unit cost of production to get the price competitiveness. The robot joint with simple mechanism is more suitable to implement the low-cost robot system as well known. The moving parts of robot have to be designed for simple and robust. But the dynamic characteristics analysis is induced by the robot links because they drive in high acceleration and deceleration. In this reason, the dynamic characteristics analysis of the high-speed robot is very important in the design process. In this paper, the study on robot driving torque analysis of a articulated robot has been done and the research results will be introduced   


2018 ◽  
Vol 388 ◽  
pp. 1-13
Author(s):  
Luca Piancastelli ◽  
Eugenio Pezzuti ◽  
Stefano Cassani

The primary task in DI (Direct Injection) diesel engines design is the fulfilment of the required emission limits. This result should be achieved with acceptable power-to-rpm diagrams, acceptable fuel consumption, acceptable power density and affordable purchase and maintenance expenses. The most common approach to fulfil these requirements is the downsizing. In this case a significant increase in the crankshaft speed and boost pressure is unavoidable. In this way, an improvement in airflow through the redesign of the intake and exhaust geometry is obtained. Unfortunately, duct design is extremely difficult due to “Mach lock”. A further important boundary condition is due the injector inertia. The dynamic response improves with small injectors due to the Newton’s second law. Small injectors designed for unitary power of 15 to 70 HP are extremely common. Therefore, most of the research is centered on these injectors. Furthermore, their small inertia favors better opening and closing time. Nozzles number and position is also greatly influential on combustion performance. The larger surface of the spray reduces the gasification time of the droplets. For these reasons, multiple injectors systems may be used in large high pressure HSDI-CR (High Speed Direct Injection – Common Rail) diesels. Multi injection was commonplace in relatively large old diesels. This paper proposes new intake duct geometries for modern two-injectors-per-cylinder truck-size engines. For this purpose a new promising, patented concept is introduced. The study includes flow simulations during the intake phase. This patented geometry induces the presence of two extremely strong swirls approximately centered to the injectors, with excellent swirl coefficient and high flow rate. The use of swirl generators on the manifolds avoids the necessity to design helical intake ducts. This patented approach simplifies head design. Moreover, using a VG (Variable Geometry) arrangement for the volutes (swirl generators) it is possible to tune the swirl index at the optimum for every crankshaft velocity and every load. In this way, the vehicle fuel consumption is also reduced.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4901
Author(s):  
Qi Zhong ◽  
Xiele Wang ◽  
Geng Xie ◽  
Huayong Yang ◽  
Cheng Yu ◽  
...  

A high-speed on/off valve (HSV) is generally the core component of a digital hydraulic transmission system. Therefore, its dynamic characteristics often restrict the overall performance of the digital hydraulic system. Most of the current studies focus on the optimization on the dynamic characteristics or the energy characteristics, few studies have comprehensively considered the two characteristics of the valve together. In this paper, a pre-existing control algorithm (PECA) is proposed to improve the dynamic characteristics of the HSV, and simultaneously optimize the power losses of the HSV to improve its energy conversion efficiency. The results show that, compared with the traditional single-voltage driven strategy, the opening time of the PECA decreases by 29.4%, the closing time decreases by 59.6%, and the energy conversion rate increases by 7.9%.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (2) ◽  
pp. 17-25
Author(s):  
JUNMING SHU ◽  
ARTHAS YANG ◽  
PEKKA SALMINEN ◽  
HENRI VAITTINEN

The Ji’an PM No. 3 is the first linerboard machine in China to use multilayer curtain coating technology. Since successful startup at the end of 2011, further development has been carried out to optimize running conditions, coating formulations, and the base paper to provide a product with satisfactory quality and lower cost to manufacture. The key challenges include designing the base board structure for the desired mechanical strength, designing the surface properties for subsequent coating operations, optimizing the high-speed running of the curtain coater to enhance production efficiency, minimizing the amount of titanium dioxide in the coating color, and balancing the coated board properties to make them suitable for both offset and flexographic printing. The pilot and mill scale results show that curtain coating has a major positive impact on brightness, while smoothness is improved mainly by the blade coating and calendering conditions. Optimization of base board properties and the blade + curtain + blade concept has resulted in the successful use of 100% recycled fiber to produce base board. The optical, mechanical, and printability properties of the final coated board meet market requirements for both offset and flexographic printing. Machine runnability is excellent at the current speed of 1000 m/min, and titanium dioxide has been eliminated in the coating formulations without affecting the coating coverage. A significant improvement in the total cost of coated white liner production has been achieved, compared to the conventional concept of using virgin fiber in the top ply. Future development will focus on combining low cost with further quality improvements to make linerboard suitable for a wider range of end-use applications, including frozen-food packaging and folding boxboard.


2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

Sign in / Sign up

Export Citation Format

Share Document