scholarly journals Cherry Tomato Production in Intelligent Greenhouses—Sensors and AI for Control of Climate, Irrigation, Crop Yield, and Quality

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6430
Author(s):  
Silke Hemming ◽  
Feije de Zwart ◽  
Anne Elings ◽  
Anna Petropoulou ◽  
Isabella Righini

Greenhouses and indoor farming systems play an important role in providing fresh and nutritious food for the growing global population. Farms are becoming larger and greenhouse growers need to make complex decisions to maximize production and minimize resource use while meeting market requirements. However, highly skilled labor is increasingly lacking in the greenhouse sector. Moreover, extreme events such as the COVID-19 pandemic, can make farms temporarily less accessible. This highlights the need for more autonomous and remote-control strategies for greenhouse production. This paper describes and analyzes the results of the second “Autonomous Greenhouse Challenge”. In this challenge, an experiment was conducted in six high-tech greenhouse compartments during a period of six months of cherry tomato growing. The primary goal of the greenhouse operation was to maximize net profit, by controlling the greenhouse climate and crop with AI techniques. Five international teams with backgrounds in AI and horticulture were challenged in a competition to operate their own compartment remotely. They developed intelligent algorithms and use sensor data to determine climate setpoints and crop management strategy. All AI supported teams outperformed a human-operated greenhouse that served as reference. From the results obtained by the teams and from the analysis of the different climate-crop strategies, it was possible to detect challenges and opportunities for the future implementation of remote-control systems in greenhouse production.

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 151
Author(s):  
Augustin T. Twabela ◽  
Lam Thanh Nguyen ◽  
Justin Masumu ◽  
Patrick Mpoyo ◽  
Serge Mpiana ◽  
...  

Newcastle disease (ND) is a highly transmissible and devastating disease that affects poultry and wild birds worldwide. Comprehensive knowledge regarding the characteristics and epidemiological factors of the ND virus (NDV) is critical for the control and prevention of ND. Effective vaccinations can prevent and control the spread of the NDV in poultry populations. For decades, the Democratic Republic of the Congo (DRC) has reported the impacts of ND on commercial and traditional poultry farming systems. The reports were preliminary clinical observations, and few cases were confirmed in the laboratory. However, data on the phylogenetic, genetic, and virological characteristics of NDVs circulating in the DRC are not available. In this study, the whole-genome sequences of three NDV isolates obtained using the next-generation sequencing method revealed two isolates that were a new variant of NDV, and one isolate that was clustered in the subgenotype VII.2. All DRC isolates were velogenic and were antigenically closely related to the vaccine strains. Our findings reveal that despite the circulation of the new variant, ND can be controlled in the DRC using the current vaccine. However, epidemiological studies should be conducted to elucidate the endemicity of the disease so that better control strategies can be implemented.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 835
Author(s):  
Onofrio Davide Palmitessa ◽  
Marco Antonio Pantaleo ◽  
Pietro Santamaria

High-tech greenhouses and artificial light applications aim to improve food production, in line with one of the sustainable development goals of the UN Agenda 2030, namely, “zero hunger”. In the past, the incandescent lamps have been used for supplementary lighting (SL) at higher latitudes to increase greenhouse production during the dark season. Light-emitting diodes (LED) have been replacing gas discharge and incandescent lamps, and their development is expanding SL applications in different agricultural scenarios (e.g., urban farming, middle latitudes). In fact, recent research on LED applications in Mediterranean greenhouses have produced encouraging results. Since middle latitudes have a higher daily light integral (DLI) than higher latitudes in the dark season and climate conditions influence the installed power load of greenhouses, LED installation and management in Mediterranean greenhouses should be different and less expensive in terms of investment and energy consumption. Accordingly, the aim of this review is to outline the state of the art in LED applications and development, with a focus on latitude-related requirements. Tomato was used as a representative crop.


2021 ◽  
Vol 1639 ◽  
pp. 461914
Author(s):  
Alexander Armstrong ◽  
Kieran Horry ◽  
Tingting Cui ◽  
Martyn Hulley ◽  
Richard Turner ◽  
...  

2011 ◽  
Vol 12 (1) ◽  
pp. 19 ◽  
Author(s):  
W. M. Wintermantel

Potyviruses, transmitted by a diverse array of common aphid species, infect a broad range of vegetable crops, and can be problematic in greenhouse tomato production. Once introduced, these viruses are believed to be transmitted plant-to-plant during pruning operations, and can infect large sections of a greenhouse, resulting in significant losses in fruit quality and yield. Several methods are used for virus management in greenhouse production, including rouging of diseased plants and treatment of tools and facilities with virucides to eradicate the virus responsible. To clarify potyvirus transmission efficiency from an infected source during pruning operations, experiments were conducted using direct and serial mechanical inoculation of Potato virus Y (PVY) using a scalpel dipped in a suspension of PVY-infected plant sap. Tests demonstrated that both serial and direct inoculation resulted in significant PVY transmission, but that transmission rates declined after the first few plants in serial transmission. Additional tests evaluated the efficiency of two virucides, a quaternary ammonium solution and sodium hypochlorite, for virus inactivation during pruning operations using a range of concentrations and time points. Results demonstrated that 0.5% sodium hypochlorite treatment for two seconds was sufficient for virus control, and superior to treatment with quaternary ammonium solutions. Accepted for publication 20 December 2010. Published 21 February 2011.


Author(s):  
Bilge Gözener ◽  
Halime Dereli

Tomato comes as the most commonly produced, consumed and subject for trading in the world. Alongside fresh consumption, on the other hand it forms the most significant raw material source of food industry, especially for tomato paste, frozen and dried vegetable-fruit and canned food industry. Turkey's greenhouse vegetable production field for 2016 year is 675173 decars and Antalya forms 51% of this field. Tomato forms 61.72% of Antalya's greenhouse production. The main material of the research consists of interviews made with producers resided in 5 villages/towns, where greenhouse tomato production is carried out densely in Antalya city, Alanya district. In 48 villages and towns, greenhouse tomato production is carried out, according to the official records. In the chosen areas, 365 producers exist. 20% of these producers (73) form the sample size. In the research, it was determined that the producers' average agricultural land possession is 9.13 decars and in 40.53% of these areas they grew tomatoes. None of these producers are engaged in contractual growing. All of the yield is produced for the edible (as table-top item). After the harvest, all of the products are sold in the wholesales market in county and city. 7.89% of the producers have no information on soilless agriculture, as 10.52% of them think that it has no advantages and 73.36% of them recommend traditional agriculture.


2021 ◽  
pp. 155-287
Author(s):  
Timothy J. Krupnik ◽  
Jagadish Timsina ◽  
Krishna P. Devkota ◽  
Bhaba P. Tripathi ◽  
Tika B. Karki ◽  
...  

Sensor Review ◽  
2016 ◽  
Vol 36 (4) ◽  
pp. 405-413 ◽  
Author(s):  
Semih Dalgin ◽  
Ahmet Özgür Dogru

Purpose The purpose of this study is to investigate the effect of internal and external factors on the accuracy and consistency of the data provided by mobile-embedded micro-electromechanical system (MEMS) pressure sensors based on smartphones currently in use. Design/methodology/approach For this purpose, sensor type and smartphone model have been regarded as internal factors, whereas temperature, location and usage habits have been considered as external factors. These factors have been investigated by examining data sets provided by sensors from 14 different smartphones. In this context, internal factors have been analyzed by implementing accuracy assessment processes for three different smartphone models, whereas external factors have been evaluated by analyzing the line charts which present timely pressure changes. Findings The study outlined that the sensor data at different sources have different characteristics due to the affecting parameters. Even if the pressure sensors are used under similar circumstances, data of these sensors have inconsistencies because of the sensor drift originated by internal factors. This study concluded that it was not applicable to provide a common correction coefficient for pressure sensor data of each smartphone model. Therefore, relative data (pressure differences) should be taken into consideration rather than absolute data (pressure values) when developing mobile applications using sensor data. Research limitations/implications Results of this study can be used as the guideline for developing mobile applications using MEMS pressure sensors. One of the main finding of this paper is promoting the use of relative data (pressure differences) rather than absolute data (pressure values) when developing mobile applications using smartphone-embedded sensor data. This significant result was proved by examinations applied with in the study and can be applied by future research studies. Originality/value Existing studies mostly evaluate the use of MEMS pressure sensor data obtained from limited number of smartphone models. As each smartphone model has a specific technology, factors affecting the sensor performances should be identified and analyzed precisely in terms of smartphone models for providing extensive results. In this study, five smartphone models were used fractionally. In this context, they were used for examining the common effects of the factors, and detailed accuracy assessments were applied by using two high-tech smartphones in the market.


HortScience ◽  
2018 ◽  
Vol 53 (8) ◽  
pp. 1179-1185 ◽  
Author(s):  
Robin G. Brumfield ◽  
Laura B. Kenny ◽  
Alyssa J. DeVincentis ◽  
Andrew K. Koeser ◽  
Sven Verlinden ◽  
...  

Greenhouse growers find themselves under increasing pressure to respond to consumer preferences to use environmentally sustainable practices and materials while maintaining profitable operations. These consumer preferences reflect a mounting awareness of the environmental issues, such as climate change and their associated social costs. Ideally, sustainable horticultural production accounts for both traditional economic considerations and such social costs, some of which can be explained through the calculation of global warming potential (GWP). An obvious candidate for a sustainable intervention is the traditional plastic pot, which growers can replace with alternative biocontainers with varying degrees of GWP. This study calculates the variability of direct costs of production using alternative containers to offer a comparison of social and economic costs. We evaluated these direct costs of producing petunia (Petunia ×hybrida) grown in pots made of traditional plastic, bioplastic, coir, manure, peat, bioplastic sleeve, slotted rice hull, solid rice hull, straw, wood fiber, and recycled reground plastic containers used in a previous assessment of GWP. Our analysis of the costs when using a traditional plastic pot showed that the highest contributors to GWP were different from the highest contributors to direct costs, revealing that the price does not reflect the environmental impact of several inputs. Electricity, the plastic shuttle tray, and the plastic pot contributed most to GWP, whereas labor, the plastic container, and paclobutrozol growth regulator contributed most to direct cost of production (COP). At 64% of total cost, labor was the most expensive input. Watering by hand added another $0.37–$0.54 per plant in labor. When we analyzed input costs of each alternative container separately, container type had the largest impact on total direct costs. Before adding container costs, the direct COP ranged from $0.56 to $0.61 per plant. After adding containers, costs ranged from $0.61 to $0.97 per plant. Wood fiber pots were the most expensive and recycled reground plastic pots were the least expensive in this study. Based on our assessment and the observed small variation in GWP between alternative containers, growers would benefit from selecting a container based on price and consumer demand. Some social costs that we are not aware of yet may be associated with some or all biocontainers.


Horticulturae ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 47 ◽  
Author(s):  
Angeliki Elvanidi ◽  
Nikolaos Katsoulas ◽  
Constantinos Kittas

Water and nitrogen deficit stress are some of the most important growth limiting factors in crop production. Several methods have been used to quantify the impact of water and nitrogen deficit stress on plant physiology. However, by performing machine learning with hyperspectral sensor data, crop physiology management systems are integrated into real artificial intelligence systems, providing richer recommendations and insights into implementing appropriate irrigation and environment control management strategies. In this study, the Classification Tree model was used to group complex hyperspectral datasets in order to provide remote visual results about plant water and nitrogen deficit stress. Soilless tomato crops are grown under varying water and nitrogen regimes. The model that we developed was trained using 75% of the total sample dataset, while the rest (25%) of the data were used to validate the model. The results showed that the combination of MSAVI, mrNDVI, and PRI had the potential to determine water and nitrogen deficit stress with 89.6% and 91.4% classification accuracy values for the training and testing samples, respectively. The results of the current study are promising for developing control strategies for sustainable greenhouse production.


2010 ◽  
Vol 15 (4) ◽  
pp. 260-270 ◽  
Author(s):  
Xinyin Chen ◽  
Yufang Bian ◽  
Tao Xin ◽  
Li Wang ◽  
Rainer K. Silbereisen

The purpose of this study was to examine parents’ perceived social change and its relations with adolescents’ reports of childrearing attitudes in urban and rural China. The participants were high school students and their parents in a Northern region of China. Parents completed a measure of perceived social change, and the adolescents completed a measure of childrearing attitudes including parental warmth, control, and encouragement of independence. The results indicated that urban parents had higher scores than rural parents on major dimensions of perceived social change including work-related opportunities, self-improvement in work, and high-tech experiences. Urban adolescents reported lower parental control and higher parental encouragement of independence than rural adolescents. In addition, parents’ reports of opportunities and prospects were positively associated with adolescents’ reports of parental warmth and encouragement of independence in childrearing across the urban and rural groups, suggesting that parents who perceived more challenges and opportunities to pursue self-advancement and personal career goals were more likely to support the use of warm and sensitive parenting and to encourage their children to develop independent behaviors. The results indicated the implications of social change for socialization and adolescent development in Chinese context.


Sign in / Sign up

Export Citation Format

Share Document