scholarly journals Analysis Method of Bending Effect on Transmission Characteristics of Ultra-Low-Profile Rectangular Microstrip Antenna

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 602
Author(s):  
Jiaying Zhang ◽  
Jin Huang ◽  
Peng Sun ◽  
Fanbo Meng ◽  
Jie Zhang ◽  
...  

With the advent of wearable communication devices, microstrip antennas have developed multiple applications due to their ultra-low-profile properties. Therefore, it is essential to analyze the problem of frequency shift and impedance mismatch when the antenna is bent. For the case of a rectangular patch antenna E-plane bent on the cylindrical surface, (1) this paper introduces the effective dielectric constant into the cavity model, which can accurately predict the resonance frequency of the antenna, and (2) according to the equivalent circuit model of the antenna resonance mode, the lumped element parameters are calculated based on the above effective dielectric constant, so that impedance characteristics and the S-parameter matching the port can be quickly constructed. From the perspective of circuit frequency characteristics, it explains the change in the transmission performance of the curved antenna. The experimental results show that the maximum difference between the experimental and theoretical calculation frequencies is less than 1%. These results verify the validity and applicability of the theory in the analysis of ultra-low-profile patch antennas and wearable electronic communication devices. It provides a theoretical basis for the fast impedance matching of patch antennas under different working conditions.

In recent years of electronics industrialization, antennas are more popular components; wearable antennas play an important role due to their properties such as wireless communication and miniaturization. The design of wearable antennas have distinction in the area of antenna design and development, in this paper a thorough study had been carried out wearable antennas blended with textile, which has significant dielectric constant. This work describes the design a textile antenna, namely, a rectangular microstrip patch antenna and then rectangular with U-slot antenna with slits. After designing two kinds of antennas, a comparison will be made between their results. Conductive textile, a copper-plated polyester fabric, will be used for fabricating antenna radiators and grounds. An insulating denim fabric with dielectric constant 1.7 with a thickness of 0.7 is used for preparing the substrates. The proposed antenna is designed and all the results will calculated using Ansoft HFSS Software. After evaluating the results of a rectangular microstrip antenna and U-slot Antenna on textile substrate, the rectangular patch resonate at 2.5 GHz with the return loss of -16.86dB and the U-slot Antenna resonated at 2.2 GHz with return loss of -41.68dB and 3.9 GHz return loss of -16.16dB.


Author(s):  
Manickam Karthigai Pandian ◽  
Thangam Chinnadurai

Background: Modern communication devices are very much dependent on the operation of low profile antennas. The objective of this paper is to perform the design and simulation of a rectangular microstrip patch antenna at a resonant frequency of 9.5 GHz. Methods: Design of the antenna is given with various substrates like FR4, Teflon and Ceramic substrates at the desired frequency. For each substrate, the performance of the antenna is measured in terms of its return loss and Voltage Standing Wave Ratio (VSWR). Results: Ansoft High-Frequency Structure Simulator is used to simulate the antenna characteristics. Conclusion: Performance characteristics of the antenna with three different substrates are compared to identify the substrate that provides the accurate return loss and VSWR.


Author(s):  
Mohammadsadegh Kasmaei ◽  
Ehsan Zareian-Jahromi ◽  
Raheleh Basiri ◽  
Valiollah Mashayekhi

Abstract In this paper, a tri-band metamaterial (MTM) loaded compact monopole antenna is proposed. In the first step of design procedure, a rectangular monopole antenna is improved by replacing the corresponding rectangular patch with a ring resonator. As a result, the first obtained operating frequency is decreased from 2.95 to 2.46 GHz. Then, this operating frequency is reduced to 2.02 GHz utilizing an MTM geometry in the antenna structure. The geometry parameters of the proposed antenna are optimized to provide the applicability for 3G, WLAN, and WiMAX applications. The impedance bandwidths of 600, 1080, and 220 MHz are obtained at 2.02–2.62, 3.48–4.56, and 5.12–5.34 GHz, respectively. Moreover, the equivalent circuit of the proposed antenna has been extracted. The proposed equivalent circuit model is validated through a comparison with corresponding simulation results. The proposed antenna is compact, low profile, via-less, and provides easy fabrication. Considering the first resonance frequency, a compactness of 32% is achieved in comparison to the corresponding unloaded monopole antenna.


Author(s):  
Mohammad Alibakhshi-Kenari

In this article, the interesting constructions of the notch-loaded rectangular patch S-shaped antennas with L-strip feeding for multiband operations are presented. Implementing the L-strip feeding leads to creation of good benefits including several resonating frequencies, no cross-sectional area, simplicity in designing and constructing, stable gains and efficiencies, and the impedance matching. The proposed antennas are realized on the different substrate materials and the dramatic changes in characteristics are reported. These antennas are simulated, tooled, fabricated, and tested to provide the better performances in terms of return loss and bandwidth. Through the proper selection of the dimensions as well as the arrangement of the L-strip, the desired resonant modes of the antennas are excited in between 6–45, 3–20, and 2–16 GHz. Results of the radiation patterns, gains, and efficiencies of the constructed antenna on the foam substrate are studied and discussed. The maximum and minimum values of the gains and radiation efficiencies of this antenna are 10 dBi and 93%, and 1 dBi and 30%, respectively. The simulation results are obtained using method of moment based on the electromagnetic solver IE3D and are in good agreements with the experimental results, which were obtained from the spectrum analyzer.


Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 373-380
Author(s):  
Christopher M. A. Bonenberger ◽  
Klaus W. Kark

Abstract Considering the narrow bandwidth of microstrip antennas, but also their applicability in upcoming technologies, this paper addresses the problem of wide-band matching, the theoretical bounds on the matching bandwidth and low-cost and low-complexity matching strategies. In this context the Bode-Fano bounds of single mode, linearly polarized aperture-coupled microstrip antennas is evaluated, optimized and compared to the theoretical bounds on matching bandwidth of other common feeding technologies. A detailed study of the input impedance of aperture-coupled patch antennas shows how to widen the Fano bounds. Based on this, a straight-forward and effective method to optimize the Fano bound is given. After optimization of the antennas input impedance, basic matching techniques can be applied, to exploit the enlarged bandwidth potential. As an example a $\lambda/4$-transformer as matching element is proposed. Design equations and simulation and measurement results of X-band prototypes are given as verification.


Author(s):  
Soumik Dey ◽  
Sukomal Dey

Abstract This paper presents a broadband miniaturized Fabry–Perot cavity resonator antenna (CRA) made of novel electromagnetic bandgap (EBG) superstrate as partially reflecting surface (PRS) and reactive impedance surface (RIS) backed rectangular patch antenna. To the best of the authors' knowledge, the proposed EBG exhibits the highest stopband bandwidth (BW) with a bandgap existing between 7.37 and 12.4 GHz (50.9%). Frequency-selective property of the EBG is utilized under plane wave incidence to demonstrate it as PRS superstrate in CRA antenna. The cavity is excited with a rectangular microstrip antenna which is made of two dielectric substrates with an additional RIS layer sandwiched between them. The RIS provides wideband impedance matching of the primary feed antenna. A 7 × 7 array of the EBG superstrate is loaded over the patch antenna having an overall lateral dimension of only 45 × 45 mm2 or 1.62 λ0 × 1.62 λ0 where λ0 is the free space wavelength at the center frequency of 10.8 GHz. The proposed Fabry–Perot CRA (FP-CRA) achieves gain enhancement of 6.59 dB as compared with the reference antenna and has a 10 dB return loss BW of 23.79% from 10.07 to 12.79 GHz. A prototype of the FP-CRA is fabricated and experimentally tested with single and dual layers of EBG superstrate. Measured results show BWs of 21.5 and 24.8% for the two cases with peak realized gain of 12.05 and 14.3 dBi, respectively. Later a four-element antenna array with corporate feeding is designed as the primary feed of the CRA. The simulation result shows a flat gain of >13 dBi with gain variation <1.2 dB over the impedance BW of 13.2%.


2021 ◽  
Vol 2117 (1) ◽  
pp. 012028
Author(s):  
A Irfansyah ◽  
B B Harianto ◽  
N Pambudiyatno

Abstract Microstrip antennas are currently popular because they have the advantage and meet the demand for small and lightweight antennas so that they are compatible and easy to integrate. This study aims to design an antenna microstrip rectangular 1x2 array, a rectangular patch microstrip antenna consisting of two elements. The antenna has a patch size of 19.5 mm x 26.5 mm array 1x2 with a frequency of 3.5 GHz. The antenna design is made in a simulation that works at a frequency of 3.5 GHz, and the substrate material is made of FR 4, which has a constant (ε r of) of 4.3, while patch materials are made of copper. Calculating the value of the initial antenna parameters will be optimized by sweeping the parameters to obtain the desired return loss, VSWR, gain, bandwidth, and directivity. The results of optimization of the rectangular microstrip antenna design 1x2 array work at a frequency of 3.5 GHz with a return loss -12.54 dB in the frequency range 3. 47 GHz up to 3.53 GHz, bandwidth 66.5 MHz, VSWR value of 1.6 and produce a gain of 5.5 dB.


Author(s):  
Álef Huan Pereira Souto ◽  
Jefferson Costa e Silva ◽  
Marília Gabriella Alves Rodrigues Santos ◽  
Alfredo Gomes Neto

<p>This work aims to perform the numerical and experimental characterization of CSRR (Complementary Split Ring Resonator) structures in the ground plane of microstrip antennas, for the use in 4G/LTE wireless systems in the 2.5 GHz band. Two geometries for the radiating elements of the antennas were used, the circular and the rectangular ones. Some initial equations were used to design the CSRR structures, followed by a numerical optimization process. This way, numerical and experimental analyzes of the changes in antennas characteristics were carried out, mainly in resonance frequency, bandwidth and radiation pattern. The simulated results were obtained using the commercial software ANSYS, which uses the Moment Method (MoM). The simulated and measured results of the antennas with the CSRR structures printed on their ground plane were compared with those obtained by circular and rectangular patch antennas with a conventional ground plane, we could observe a reduction in their resonant frequency, enabling the miniaturization process.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Jan Eichler ◽  
Pavel Hazdra ◽  
Miloslav Capek ◽  
Milos Mazanek

The chosen rectangular and fractal microstrip patch antennas above an infinite ground plane are analyzed by the theory of characteristic modes. The resonant frequencies and radiationQare evaluated. A novel method by Vandenbosch for rigorous evaluation of the radiationQis employed for modal currents on a Rao-Wilton-Glisson (RWG) mesh. It is found that the resonant frequency of a rectangular patch antenna with a dominant mode presents quite complicated behaviour including having a minimum at a specific height. Similarly, as predicted from the simple wire model, the radiationQexhibits a minimum too. It is observed that the presence of out-of-phase currents flowing along the patch antenna leads to a significant increase of theQfactor.


Author(s):  
MAHESH M. GADAG ◽  
LUBNA F. SHAIKH ◽  
KUMARI AAHALADIKA ◽  
KUNDAN KUMAR

Microstrip antennas are becoming increasingly useful these days as they can be printed directly on a circuit board. They are relatively inexpensive to manufacture and design because of the simple 2-dimensional physical geometry. This is a key feature of microstrip antenna to be used in wireless communication field. Thus bandwidth and gain improvement have become major design consideration for practical application of microstrip antennas. The purpose of this paper is to design a rectangular microstrip antenna with parasitic side patches using air coupling. IE3D simulation software is used for simulation and a comparison is made between the basic patch antenna and improved patch antennas.


Sign in / Sign up

Export Citation Format

Share Document