scholarly journals Novel Advanced Composite Bamboo Structural Members with Bio-Based and Synthetic Matrices for Sustainable Construction

2020 ◽  
Vol 12 (6) ◽  
pp. 2485 ◽  
Author(s):  
Amir Mofidi ◽  
Judith Abila ◽  
Jackson Tsz Ming Ng

This paper experimentally investigates the properties of unprecedented new advanced composite structural members in compressions made of bamboo culms formed with different bio-based and synthetic matrices. Due to extensive CO2 emissions corresponded to the production of construction materials, it is essential to produce high-performance environmental-friendly construction materials from bio-based renewable resources such as bamboo. However, the use of bamboo culms in construction has been hindered by their inherent specific geometric hollow shape. To address this issue, small-diameter bamboo species were used in this study to form solid structural composite cross-sections to desired shapes. An experimental study was conducted on the compressive properties of six composite structural members made of commonly available bamboo species (Phyllostachys edulis or Moso) with different matrices including a bio-based furan resin, a cementitious grout, and epoxy. In order to prevent premature buckling of bamboo components within the engineered columns, and in an attempt to propose a bio-based structural column, three layers of hemp wrap where applied to provide confinement for bamboo culms. The results of the tests confirm that the bamboo-furan and bamboo-grout composite columns both have the potential to reach a remarkable compressive strength of 30 MPa. However, the bamboo-epoxy composite specimen, considering the excellent mechanical properties of the epoxy matrix, delivered a benchmark to demonstrate the potentials of bamboo-based structural sections by reaching 76 MPa compressive strength before crushing. The bamboo-epoxy composite provided new prospects for future work on the 100% bio-based versions of the bamboo-based sections with improved bio-matrices (by using bio-epoxy and improved furan resins with compatible mixes) and innovative confinement types. With the promising results of this study, there is a real opportunity of creating contemporary engineered bamboo-based structures as a sustainable replacement to the existing steel, concrete and timber structures.

2021 ◽  
Vol 11 (11) ◽  
pp. 4754
Author(s):  
Assia Aboubakar Mahamat ◽  
Moussa Mahamat Boukar ◽  
Nurudeen Mahmud Ibrahim ◽  
Tido Tiwa Stanislas ◽  
Numfor Linda Bih ◽  
...  

Earth-based materials have shown promise in the development of ecofriendly and sustainable construction materials. However, their unconventional usage in the construction field makes the estimation of their properties difficult and inaccurate. Often, the determination of their properties is conducted based on a conventional materials procedure. Hence, there is inaccuracy in understanding the properties of the unconventional materials. To obtain more accurate properties, a support vector machine (SVM), artificial neural network (ANN) and linear regression (LR) were used to predict the compressive strength of the alkali-activated termite soil. In this study, factors such as activator concentration, Si/Al, initial curing temperature, water absorption, weight and curing regime were used as input parameters due to their significant effect in the compressive strength. The experimental results depict that SVM outperforms ANN and LR in terms of R2 score and root mean square error (RMSE).


2018 ◽  
Vol 7 (2.29) ◽  
pp. 927 ◽  
Author(s):  
Bishir Kado ◽  
Shahrin Mohammad ◽  
Yeong Huei Lee ◽  
Poi Ngian Shek ◽  
Mariyana Aida Ab Kadir

Lightweight construction is aimed to achieve a sustainable feature by reducing transportation frequency and construction materials usage during construction phase. Lightweight precast concrete may serve an alternative for the lightweight construction. There are rarely application can be found for structural members as lightweight panels always to be used for secondary or non-load bearing members. This paper presents an experimental study on properties (compressive strength, splitting tensile strength, water absorption) of lightweight foamed concrete (LFC) at two different curing methods. LFC with densities of 1500, 1700, and 1800 kg/m3, cement-sand ratio of 2:1 and water-cement ratio of 0.5 were investigated. The results showed LFC can be produced with the properties ofdensity range of 1500 to 1800 kg/m3 and corresponding compressive strength of 10 to 39 MPa. The higher the density of LFC, the less the water absorption for all the curing method considered, the highest and the lowest water absorption was 11.3% and 2.0% for 1500 kg/m3 cured in water and 1800 kg/m3 cured in air respectively. Compressive strength of LFC increases with age and density while water cured LFC has high compressive strength. Splitting tensile strength increases with density of LFC, but air cured LFC has more splitting tensile strength than water cured of the same density. The highest splitting tensile strength recorded was 3.92 MPa for 1800 kg/m3 cured in air, which was about 16% of its compressive strength at 28 days of curing age. These properties are important and can be applied to LFC precast structural members with air or water curing method which have less references for LFC in structural usage.  


2013 ◽  
Vol 357-360 ◽  
pp. 1138-1141 ◽  
Author(s):  
Xiu Ling Li ◽  
Wang Juan

The sustainability of the construction material is increasingly coming to the forefront of the structure design and maintenance decisions. To address this, development of a new class of more sustainable construction material is needed, especially in China. This paper reports on the development of the green high-performance fiber-reinforced cementitious composites (GHPFRCC) with high volumes of fly ash and PVA fiber, and emphasizes the axial compressive strength and elastic modulus of GHPFRCC. Experimental results show that the prism axial compressive strength of GHPFRCC ranges from 15MPa to 40MPa. The elastic modulus of GHPFRCC is around 16-35GPa, typically lower than concrete.


2018 ◽  
Vol 156 ◽  
pp. 05018 ◽  
Author(s):  
Ngo Janne Pauline S. ◽  
Promentilla Michael Angelo B.

The growing environmental and economic concerns have led to the need for more sustainable construction materials. The development of foamed geopolymer combines the benefit of reduced environmental footprint and attractive properties of geopolymer technology with foam concrete’s advantages of being lightweight, insulating and energy-saving. In this study, alkali-treated abaca fiber-reinforced geopolymer composites foamed with H2O2 were developed using fly ash as the geopolymer precursor. The effects of abaca fiber loading, foaming agent dosage, and curing temperature on mechanical strength were evaluated using Box-Behken design of experiment with three points replicated. Volumetric weight of samples ranged from 1966 kg/m3 to 2249 kg/m3. Measured compressive strength and flexural ranged from 19.56 MPa to 36.84 MPa, and 2.41 MPa to 6.25 MPa, respectively. Results suggest enhancement of compressive strength by abaca reinforcement and elevated temperature curing. Results, however, indicate a strong interaction between curing temperature and foaming agent dosage, which observably caused the composite’s compressive strength to decline when simultaneously set at high levels. Foaming agent dosage was the only factor detected to significantly affect flexural strength.


2014 ◽  
Vol 634 ◽  
pp. 121-130 ◽  
Author(s):  
Maura Berger Maltez Melchert ◽  
Marcelo Mendes Viana ◽  
Jo Dweck

This paper presents the study of the simultaneous use of two residual catalysts (RAl and RNi) with type II Portland cement, in order to avoid environmental impacts and to use of the solidified products as structural sustainable materials. The solidification/stabilization (S/S) was evaluated by thermogravimetric analysis, X ray diffraction, leaching and compressive strength tests. Mortars with water/cement mass ratio equal to 0.5 were prepared, into which, different percentual masses of each waste were added. The main phases formed due to the retarding and accelerating actions of each waste were evaluated by thermogravimetry and X ray diffraction after 28 days of hydration. The leaching tests done with the solidified mortars presented values of Ni and Al contents below maximum accepted limits, indicating that they attend to environmental legislation, as well as eliminate the original environmental impact of the original wastes. Mortars evaluated after 28 days by compressive strength tests, presented acceptable results for their possible use as construction materials.


2014 ◽  
Vol 980 ◽  
pp. 91-96
Author(s):  
O.A. Johnson ◽  
Napiah Madzlan ◽  
Ibrahim B. Kamaruddin

In the recent years there has been an intensification of policies on sustainable construction materials in the construction industry. This environmental policy has brought about development of various sustainable materials in which Petrovege blocks is one of the outstanding products. This paper investigates the effect of curing age on the compressive strength of the product. Block samples were prepared by adding 8%, 9%, 10%, 11%, 12%, and 13% liquid content of the mixture of vegetable oil and crude oil sludge as a binder after the optimum liquid content has been established. The specimens were cured at different period of time of 48hrs, 72hrs, 96hrs, and 120hrs. Mechanical properties of the products were evaluated. Compressive strength of Petrovege samples varies from 5.31 N/mm2to 18.88 N/mm2indicating that the compressive strength increases with increase in curing age, while decrease in porosity leads to increased compressive strength for the stipulated curing ages. All samples satisfied the minimum requirements in terms of compressive strength, in accordance with all available standards.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5353
Author(s):  
Khaled A. Eltawil ◽  
Mohamed G. Mahdy ◽  
Osama Youssf ◽  
Ahmed M. Tahwia

Experimental work was carried out to study new fine aggregate shielding construction materials, namely black sand (BS). The BS effect on the mechanical, durability, and shielding characteristics of heavyweight high-performance concrete (HWHPC) was evaluated. This study aimed at improving various HWHPC properties, concertedly. Fifteen mixtures of HWHPC were made, with various variables, including replacing 10% and 15% of the cement with fly ash (FA) and replacing normal sand by BS at various contents (15%, 30%, 45%, 60%, 75%, and 100%). The test specimens were subjected to various exposure conditions, including elevated temperatures, which ranged from 250 °C to 750 °C, for a duration of 3 h; magnesium sulfate (MS) exposure; and gamma-ray exposure. The effects of elevated temperature and sulfate resistance on concrete mass loss were examined. The results revealed that BS is a promising shielding construction material. The BS content is the most important factor influencing concrete compressive strength. Mixes containing 15% BS demonstrated significantly better strength compared to the control mixes. Exposure to 250 °C led to a notable increase in compressive strength. BS showed a significant effect on HWHPC fire resistance properties, especially at 750 °C and a significant linear attenuation coefficient. Using 10% FA with 15% BS was the most effective mixing proportion for improving all HWHPC properties concertedly, especially at greater ages.


2018 ◽  
Vol 1 (1) ◽  
pp. 4-9
Author(s):  
Renan Pícolo Salvador ◽  
Roberto Munhoz Bueno ◽  
Dimas Alan Strauss Rambo ◽  
Sandro Martini

Cement production is responsible for 5% of CO2 emissions worldwide. The concern about the pollution derived from the construction industry has brought attention to the need of developing more sustainable construction materials and processes. Admixtures based on nanometric graphene oxide have the potential to enhance mechanical properties and durability of cementitious composites. In this context, an experimental program was conducted to evaluate how the addition of graphene oxide may be used to reduce cement content in concretes, maintaining the same mechanical properties of conventional concretes (control matrices, with no graphene oxide additions). Kinetics of hydration of cement pastes was evaluated by isothermal calorimetry, phase evolution during hydration was determined by X-ray diffraction coupled with quantitative Rietveld analysis and mechanical properties were evaluated by compressive strength. Results indicate that graphene oxide additions provide a faster hydration rate until 24 h and generate a larger amount of C-S-H gel, increasing mechanical strength of the matrix. By the addition of graphene oxide dispersion (0.4% of solid content) at 0.02% by cement weight, cement content reductions of up to 15% may be achieved, maintaining the same compressive strength as the control matrices. From this research, a reduction in cement content to obtain more sustainable construction materials and processes may be achieved.


2019 ◽  
Vol 23 (4) ◽  
pp. 713-732 ◽  
Author(s):  
Shu Fang ◽  
Li-Juan Li ◽  
Tao Jiang ◽  
Bing Fu

Concrete infilled in a small-diameter fiber-reinforced polymer tube is strongly confined, thus having a high compressive strength and excellent deformability. Such a feature is exploited in the development of two types of high-performance hybrid members at Guangdong University of Technology, China, by incorporating small-diameter (30 to 60 mm) concrete-filled fiber-reinforced polymer tubes as internal reinforcements. Understanding the compressive behavior of small-diameter concrete-filled fiber-reinforced polymer tubes is essential to understanding the behavior of the proposed hybrid members and the development of their design approaches. This article therefore presents a systematic study on the axial compressive behavior of small-diameter concrete-filled fiber-reinforced polymer tubes with the test parameters being the thickness, diameter, and fiber type of fiber-reinforced polymer tubes and concrete strength. The test results show that the tested small-diameter concrete-filled fiber-reinforced polymer tubes have a compressive strength and an ultimate axial strain of up to 267 MPa and 10.3%, which are, respectively, about 6 and 34 times that of the corresponding unconfined specimens, demonstrating the great potential of small-diameter concrete-filled fiber-reinforced polymer tubes as internal reinforcements for use in high-performance hybrid members. The applicability of three widely accepted stress–strain models developed based on test results of fiber-reinforced polymer-confined concrete cylinders with a diameter of 150 mm or above is also examined. It is shown that the three models tend to predict a steeper second portion of stress–strain responses than the test results, revealing the need of a tailored stress–strain model for small-diameter concrete-filled fiber-reinforced polymer tubes.


2020 ◽  
Vol 6 (1) ◽  
pp. 98-113 ◽  
Author(s):  
Rawa Shakir Muwashee

This study devotes to investigate the use of Raw Sewage Sludge (RSS) and Rice Husk Ash (RHA) to obtain sustainable construction materials. This study focuses on the evaluation of using cement-based materials having RSS and RHA. The methodology of this study could be summarized by replacing water by RSS and replacement of 10 %RHA from the weight of cement. Five groups have been used with different ratios of RSS/binder; for each group with and without RHA. In addition, the sand/binder ratio has been changed for Group 2. This method includes testing the flowability, compressive strength, Total Water Absorption (TWA) and density for the mortar mixes containing these materials. The results indicate that mixes with added materials encourage the results compared to control mixes. Addition of RHA considerably decreases flowability; however it enhanced compressive strength for all groups especially for Groups 3, 4 and 5.  Moreover, the minimum values of TWA were recorded when 10% RHA was utilized as a cement replacement for both RSS and water mixes. Finally, it was found that replacing RSS by water, leads to the reduction in flowability and TWA in all mixes especially at 10% RHA; whereas the strength and density increase.


Sign in / Sign up

Export Citation Format

Share Document