scholarly journals The Investigation of TiO2 NPs Effect as a Wastewater Treatment to Mitigate Cd Negative Impact on Bamboo Growth

2021 ◽  
Vol 13 (6) ◽  
pp. 3200
Author(s):  
Abolghassem Emamverdian ◽  
Yulong Ding ◽  
Farzad Mokhberdoran ◽  
Zishan Ahmad ◽  
Yinfeng Xie

The recent emerging evidence reveals that titanium dioxide nanoparticles (TiO2 NPs) can be used as a wastewater treatment. This study provides new information about the possible detoxification role of TiO2 NPs as a wastewater treatment in plants under heavy metal stress, with an emphasis on the mechanisms involved. Here, we investigated the effects of TiO2 NPs as one wastewater treatment on a bamboo species (Arundinaria pygmaea L.) under in vitro Cadmium (Cd) toxicity conditions. A factorial experiment was conducted in a completely randomized design with four replications of four concentrations of Cd (50, 100, 200, and 300 µM) alone and in combination with 100 and 200 µM TiO2 NPs as two wastewater treatments, as well as a control treatment. The results indicated that TiO2 NPs concentrations enhanced enzymatic and non-enzymatic antioxidant activities and proline accumulation as well as reducing hydrogen peroxide (H2O2), superoxide radical (O2•−), and malondialdehyde (MDA) levels, which led to improved photosynthetic parameters with an eventual increase in plant biomass as compared to the control treatment. Therefore, TiO2 NPs improved the photosynthetic parameters of bamboo under Cd toxicity, which led to an increase in plant biomass. We concluded that the wastewater treatments of TiO2 NPs improved bamboo biomass through the scavenging of reactive oxygen species (ROS) compounds (H2O2 and O2•−), which was induced by the stimulation of the antioxidant capacity of the plant. TiO2 also protected cell membranes by reducing lipoperoxidation in bamboo under Cd toxicity. The concentration of 200 µM TiO2 NPs had the most impact in reducing Cd toxicity.

Author(s):  
Wei Zhang ◽  
Jinghua Long ◽  
Jianmin Geng ◽  
Jie Li ◽  
Zhongyi Wei

The impact of engineered nanoparticles (ENPs) on the migration and toxicity of coexisting pollutants is still unclear, especially in soil media. This study aims to evaluate the impact of titanium dioxide nanoparticles (TiO2 NPs) on the phytotoxicity of cadmium (Cd) to Oryza sativa L., and the migration of cadmium (Cd) in the soil-rice system. Three different Cd stress groups (C1 group: 1.0 mg kg−1, C2 group: 2.5 mg kg−1 and C3 group: 5.0 mg kg−1) were set in the pot experiment, and the target concentration of TiO2 NPs in each group were 0 mg kg−1 (T0), 50 mg kg−1 (T1), 100 mg kg−1 (T2) and 500 mg kg−1 (T3). Plant height and biomass decreased with the increasing of Cd content in paddy soil. TiO2 NPs could lower the phytotoxicity of Cd in terms of the changes in the morphological and biochemical characteristics, especially in the tillering and booting stage. In the tillering stage, TiO2 NPs addition caused a significant increase in plant height, biomass and the total chlorophyll content in the leaves of Oryza saliva L. In the booting stage, TiO2 NPs addition caused a 15% to 32% and 24% to 48% reduction of malondialdehyde (MDA) content for the C2 and C3 group, respectively, compared to that of the respective control treatment (T0). TiO2-NPs addition reduced the activity of peroxidase (POD) in the leaves in the booting and heading stage, and the activity of catalase (CAT) in the tillering stage. In the C1 and C2 group, the grain Cd content in the 100 and 500 mg kg−1 TiO2 NPs treatments reached 0.47–0.84 mg kg−1, obviously higher than that of the treatment without TiO2 NPs (0.27–0.32 mg kg−1), suggesting that TiO2-NPs could promote Cd migration in the soil-rice system.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1511 ◽  
Author(s):  
Filomena Mottola ◽  
Concetta Iovine ◽  
Marianna Santonastaso ◽  
Maria Luisa Romeo ◽  
Severina Pacifico ◽  
...  

Titanium dioxide nanoparticles (NPs-TiO2 or TiO2-NPs) have been employed in many commercial products such as medicines, foods and cosmetics. TiO2-NPs are able to carry antibiotics to target cells enhancing the antimicrobial efficiency; so that these nanoparticles are generally used in antibiotic capsules, like lincomycin, added as a dye. Lincomycin is usually used to treat pregnancy bacterial vaginosis and its combination with TiO2-NPs arises questions on the potential effects on fetus health. This study investigated the potential impact of TiO2-NPs and lincomycin co-exposure on human amniocytes in vitro. Cytotoxicity was evaluated with trypan blue vitality test, while genotoxic damage was performed by Comet Test, Diffusion Assay and RAPD-PCR for 48 and 72 exposure hours. Lincomycin exposure produced no genotoxic effects on amniotic cells, instead, the TiO2-NPs exposure induced genotoxicity. TiO2-NPs and lincomycin co-exposure caused significant increase of DNA fragmentation, apoptosis and DNA damage in amniocytes starting from 48 exposure hours. These results contribute to monitor the use of TiO2-NPs combined with drugs in medical application. The potential impact of antibiotics with TiO2-NPs during pregnancy could be associated with adverse effects on embryo DNA. The use of nanomaterials in drugs formulation should be strictly controlled in order to minimize risks.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 759
Author(s):  
Abolghassem Emamverdian ◽  
Yulong Ding ◽  
Farzad Mokhberdoran ◽  
Muthusamy Ramakrishnan ◽  
Zishan Ahmad ◽  
...  

Bamboo forests cover a remarkable area of Chinese forestland. Recently, titanium dioxide nanoparticles (TiO2 NPs) have been used for plant protection against abiotic stress. In this study, an in vitro tissue culture experiment was conducted to determine the impact of titanium on plant tolerance to two different heavy metals (Cu and Pb). Bamboo plants (Arundinaria pygmaea L.) were grown using five concentrations of TiO2 NPS (0, 50, 80, 100, and 150 µM) without or with 100 µM Cu and 100 µM Pb for 30 days. The results showed that while Cu and Pb increased the generation of Reactive oxygen species (ROS) compounds in plants, TiO2 NP treatments played a positive role in reducing oxidative stress, as indicated by the decrease in ROS compounds, the extent of lipoperoxidation, and soluble proteins. On the other hand, the use of TiO2 NPs increased the total antioxidant capacity, chlorophyll content and general plant biomass. Moreover, the addition of TiO2 NPs significantly reduced Cu, and Pb accumulation in roots, stems, and shoots. We concluded that TiO2 NPs have the ability to reduce oxidative stress in plants by increasing the antioxidant capacity, improving the level of injury, and protecting cell membranes via reducing lipoperoxidation (reduction of Malondialdehyde (MDA) content). However, the results indicated that the efficiency of TiO2 NPs was related to the type and concentration of heavy metal, as TiO2 NPs were more effective for Cu than Pb. Additionally, a high concentration of TiO2 NPs resulted in the greatest enhancement in plant growth and development under heavy metal stress.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 250
Author(s):  
Natividad Isabel Navarro Pacheco ◽  
Radka Roubalova ◽  
Jaroslav Semerad ◽  
Alena Grasserova ◽  
Oldrich Benada ◽  
...  

Titanium dioxide nanoparticles (TiO2 NPs) are manufactured worldwide. Once they arrive in the soil environment, they can endanger living organisms. Hence, monitoring and assessing the effects of these nanoparticles is required. We focus on the Eisenia andrei earthworm immune cells exposed to sublethal concentrations of TiO2 NPs (1, 10, and 100 µg/mL) for 2, 6, and 24 h. TiO2 NPs at all concentrations did not affect cell viability. Further, TiO2 NPs did not cause changes in reactive oxygen species (ROS) production, malondialdehyde (MDA) production, and phagocytic activity. Similarly, they did not elicit DNA damage. Overall, we did not detect any toxic effects of TiO2 NPs at the cellular level. At the gene expression level, slight changes were detected. Metallothionein, fetidin/lysenin, lumbricin and MEK kinase I were upregulated in coelomocytes after exposure to 10 µg/mL TiO2 NPs for 6 h. Antioxidant enzyme expression was similar in exposed and control cells. TiO2 NPs were detected on coelomocyte membranes. However, our results do not show any strong effects of these nanoparticles on coelomocytes at both the cellular and molecular levels.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2354
Author(s):  
Mohammad Mamunur Rashid ◽  
Petra Forte Tavčer ◽  
Brigita Tomšič

Nanotechnology has enabled tremendous breakthroughs in the development of materials and, nowadays, is well established in various economic fields. Among the various nanomaterials, TiO2 nanoparticles (NPs) occupy a special position, as they are distinguished by their high availability, high photocatalytic activity, and favorable price, which make them useful in the production of paints, plastics, paper, cosmetics, food, furniture, etc. In textiles, TiO2 NPs are widely used in chemical finishing processes to impart various protective functional properties to the fibers for the production of high-tech textile products with high added value. Such applications contribute to the overall consumption of TiO2 NPs, which gives rise to reasonable considerations about the impact of TiO2 NPs on human health and the environment, and debates regarding whether the extent of the benefits gained from the use of TiO2 NPs justifies the potential risks. In this study, different TiO2 NPs exposure modes are discussed, and their toxicity mechanisms—evaluated in various in vitro and in vivo studies—are briefly described, considering the molecular interactions with human health and the environment. In addition, in the conclusion of this study, the toxicity and biocompatibility of TiO2 NPs are discussed, along with relevant risk management strategies.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 465 ◽  
Author(s):  
Alena Kazimirova ◽  
Naouale El Yamani ◽  
Laura Rubio ◽  
Alba García-Rodríguez ◽  
Magdalena Barancokova ◽  
...  

The genotoxicity of anatase/rutile TiO2 nanoparticles (TiO2 NPs, NM105 at 3, 15 and 75 µg/cm2) was assessed with the mammalian in-vitro Hypoxanthine guanine phosphoribosyl transferase (Hprt) gene mutation test in Chinese hamster lung (V79) fibroblasts after 24 h exposure. Two dispersion procedures giving different size distribution and dispersion stability were used to investigate whether the effects of TiO2 NPs depend on the state of agglomeration. TiO2 NPs were fully characterised in the previous European FP7 projects NanoTEST and NanoREG2. Uptake of TiO2 NPs was measured by transmission electron microscopy (TEM). TiO2 NPs were found in cytoplasmic vesicles, as well as close to the nucleus. The internalisation of TiO2 NPs did not depend on the state of agglomeration and dispersion used. The cytotoxicity of TiO2 NPs was measured by determining both the relative growth activity (RGA) and the plating efficiency (PE). There were no substantial effects of exposure time (24, 48 and 72 h), although a tendency to lower RGA at longer exposure was observed. No significant difference in PE values and no increases in the Hprt gene mutant frequency were found in exposed relative to unexposed cultures in spite of evidence of uptake of NPs by cells.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
AH Adebayo ◽  
AO Abolaji ◽  
OO Ayepola ◽  
TB Olorunfemi ◽  
OS Taiwo

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
A Itharat ◽  
S Sayompark ◽  
P Hansakul ◽  
B Dechayont

2020 ◽  
Vol 5 (3) ◽  
pp. 179-184
Author(s):  
Marianna Havryshko ◽  
◽  
Olena Popovych ◽  
Halyna Yaremko ◽  
◽  
...  

At the present stage of development, the entire world industry has faced the problem of rational use of renewable natural resources, in particular the most efficient ways of wastewater treatment and the use of accumulated waste in the production process as a secondary raw material. In particular, the alcohol industry, as one of the components of food, medical, chemical and various industries,leads to the formation of huge amounts of waste, including wastewater. The food industry, like any other industry, has a negative impact on the environment. Water bodies are the most affected by the food industry. Almost the first place in terms of water consumption per unit of production is the production of alcohol. Consumption of large amounts of water leads to the formation of wastewater, which is highly polluted and adversely affects the environment. Due to the high chemical and biological consumption of oxygen, specific color and odor, suspended solids, low pH value, the purification of such waste in the filtration fields and discharge into water bodies is not possible. The purpose of our work is: 1) conducting the analysis of the alcohol industry potential in Ukraine in recent years, and methods of waste disposal as a potential source for the development of bioenergy. 2) environmental aspects of the alcohol industry modernization at present stage of development and implementation of modern wastewater treatment technologies.


Sign in / Sign up

Export Citation Format

Share Document