scholarly journals Emerging Fusarium Mycotoxins Fusaproliferin, Beauvericin, Enniatins, and Moniliformin in Serbian Maize

Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 357 ◽  
Author(s):  
Igor Jajić ◽  
Tatjana Dudaš ◽  
Saša Krstović ◽  
Rudolf Krska ◽  
Michael Sulyok ◽  
...  

Emerging mycotoxins such as moniliformin (MON), enniatins (ENs), beauvericin (BEA), and fusaproliferin (FUS) may contaminate maize and negatively influence the yield and quality of grain. The aim of this study was to determine the content of emerging Fusarium mycotoxins in Serbian maize from the 2016, 2017, and 2018 harvests. A total of 190 samples from commercial maize production operations in Serbia were analyzed for the presence of MON, ENs, BEA, and FUS using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The obtained results were interpreted together with weather data from each year. MON, BEA, and FUS were major contaminants, while other emerging mycotoxins were not detected or were found in fewer samples (<20%). Overall contamination was highest in 2016 when MON and BEA were found in 50–80% of samples. In 2017 and 2018, high levels of MON, FUS, and BEA were detected in regions with high precipitation and warm weather during the silking phase of maize (July and the beginning of August), when the plants are most susceptible to Fusarium infections. Since environmental conditions in Serbia are favorable for the occurrence of mycotoxigenic fungi, monitoring Fusarium toxins is essential for the production of safe food and feed.

2021 ◽  
Vol 13 (15) ◽  
pp. 8247
Author(s):  
Dimitrios N. Vlachostergios ◽  
Christos Noulas ◽  
Anastasia Kargiotidou ◽  
Dimitrios Baxevanos ◽  
Evangelia Tigka ◽  
...  

Lentil is a versatile and profitable pulse crop with high nutritional food and feed values. The objectives of the study were to determine suitable locations for high yield and quality in terms of production and/or breeding, and to identify promising genotypes. For this reason, five lentil genotypes were evaluated in a multi-location network consisting of ten diverse sites for two consecutive growing seasons, for seed yield (SY), other agronomic traits, crude protein (CP), cooking time (CT) and crude protein yield (CPY). A significant diversification and specialization of the locations was identified with regards to SY, CP, CT and CPY. Different locations showed optimal values for each trait. Locations E4 and E3, followed by E10, were “ideal” for SY; locations E1, E3 and E7 were ideal for high CP; and the “ideal” locations for CT were E3 and E5, followed by E2. Therefore, the scope of the cultivation determined the optimum locations for lentil cultivation. The GGE-biplot analysis revealed different discriminating abilities and representativeness among the locations for the identification of the most productive and stable genotypes. Location E3 (Orestiada, Region of Thrace) was recognized as being optimal for lentil breeding, as it was the “ideal” or close to “ideal” for the selection of superior genotypes for SY, CP, CT and CPY. Adaptable genotypes (cv. Dimitra, Samos) showed a high SY along with excellent values for CP, CT and CPY, and are suggested either for cultivation in many regions or to be exploited in breeding programs.


2018 ◽  
Vol 11 (3) ◽  
pp. 341-357 ◽  
Author(s):  
C.K. Mutegi ◽  
P.J. Cotty ◽  
R. Bandyopadhyay

Aflatoxins are highly toxic metabolites of several Aspergillus species widely distributed throughout the environment. These toxins have adverse effects on humans and livestock at a few micrograms per kilogram (μg/kg) concentrations. Strict regulations on the concentrations of aflatoxins allowed in food and feed exist in many nations in the developing world. Loopholes in implementing regulations result in the consumption of dangerous concentrations of aflatoxins. In Kenya, where ‘farm-to-mouth’ crops become severely contaminated, solutions to the aflatoxins problem are needed. Across the decades, aflatoxins have repeatedly caused loss of human and animal life. A prerequisite to developing viable solutions for managing aflatoxins is understanding the geographical distribution and severity of food and feed contamination, and the impact on lives. This review discusses the scope of the aflatoxins problem and management efforts by various players in Kenya. Economic drivers likely to influence the choice of aflatoxins management options include historical adverse health effects on humans and animals, cost of intervention for mitigation of aflatoxins, knowledge about aflatoxins and their impact, incentives for aflatoxins safe food and intended scope of use of interventions. It also highlights knowledge gaps that can direct future management efforts. These include: sparse documented information on human exposure; few robust tools to accurately measure economic impact in widely unstructured value chains; lack of long-term impact studies on benefits of aflatoxins mitigation; inadequate sampling mechanisms in smallholder farms and grain holding stores/containers; overlooking social learning networks in technology uptake and lack of in-depth studies on an array of aflatoxins control measures followed in households. The review proposes improved linkages between agriculture, nutrition and health sectors to address aflatoxins contamination better. Sustained public awareness at all levels, capacity building and aflatoxins related policies are necessary to support management initiatives.


2008 ◽  
Vol 48 (3) ◽  
pp. 326 ◽  
Author(s):  
C. J. Birch ◽  
K. Stephen ◽  
G. McLean ◽  
A. Doherty ◽  
G. L. Hammer ◽  
...  

Maize may assume a more significant role in grain crop production systems in north-east Australia if the probability of producing low yields associated with given amounts of available water can be reduced. Growing hybrids with very early maturity provides a possible way to achieve this. Simulation studies of dryland maize production in areas of highly variable rainfall in north-east Australia were undertaken using long-term weather data input to the APSIM model configured for quick to medium maturity maize. The studies focussed on sowing time options, population density, cultivars, and water availability at sowing. Simulation outputs included predicted mean and median yield, measures of yield variability, and the probability of producing low to very low yield (<2 t/ha). The study showed that optimum sowing date varied with location, and that low populations gave more reliable production, despite some potential yield losses in favourable years. The results of the simulation study provide estimates of yield and thus economic viability of maize production that are interpreted in terms of seasonal variability. They indicate that maize is a viable dryland cropping option provided that cultivar, sowing time and starting water conditions are optimised. Non-optimal conditions of water supply at sowing should be avoided, as greater variability in yield and reduced viability are predicted.


Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 423
Author(s):  
Robert Kosicki ◽  
Magdalena Twarużek ◽  
Paweł Dopierała ◽  
Bartosz Rudzki ◽  
Jan Grajewski

Rye (Secale cereale L.) is one of the most important cereals and is used in both the food and feed industries. It is produced mainly in a belt extending from Russia through Poland to Germany. Despite the great economic importance of this cereal, there is little research on rye contamination with mycotoxins. In this study, the occurrence of Fusarium mycotoxins (deoxynivalenol, nivalenol, 3-acetyl-deoxynivalenol, monoacetoxyscirpenol, diacetoxyscirpenol, T-2 toxin, HT-2 toxin, and zearalenone), as well as ochratoxin A, in 60 winter rye samples of four varieties (KWS Binntto, KWS Serafino, Dańkowskie Granat and Farm Saved Seed) cultivated in three consecutive growing seasons in five different regions of Poland was determined using liquid chromatography with tandem mass spectrometry and fluorescence detection. Deoxynivalenol, T-2 toxin, HT-2 toxin, and zearalenone had the highest occurrence in samples (90%, 63%, 57%, and 45% positive results, respectively). The mean concentrations of these analytes were 28.8 µg/kg (maximum 354.1 µg/kg), 0.98 µg/kg (maximum 6.63 µg/kg), 2.98 µg/kg (maximum 29.8 µg/kg), and 0.69 µg/kg (maximum 10.2 µg/kg), respectively. The mean concentrations for individual mycotoxins were highest in the 2016/2017 growing season. In the 2016/2017 growing season, at least two mycotoxins were detected in 95% of the samples, while in the 2018/2019 growing season, 70% of samples contained one or no mycotoxins. The frequencies of mycotoxin occurrence in different rye varieties were similar. Although a high frequency of mycotoxin occurrence was noted (especially deoxynivalenol), their concentrations were low, and none of the analyzed rye samples exceeded the maximum acceptable mycotoxin level set by the European Commission.


2009 ◽  
Vol 2 (2) ◽  
pp. 181-192 ◽  
Author(s):  
M. Jestoi ◽  
M. Kokkonen ◽  
S. Uhlig

Most Fusarium species are capable of producing mycotoxins that may cause adverse effects on human or animal health. The most commonly studied Fusarium mycotoxins include trichothecenes, zearalenone and fumonisins. However, it seems that nearly all of the most prevalent Fusarium species infecting grains are also capable of producing other toxic metabolites. The existing studies, although exiguous, have clearly demonstrated that other toxic metabolites of Fusarium spp. are also present in our foods and feeds, occasionally at very high levels. It is apparent that since mycotoxins, including these 'other' metabolites, are natural toxins, they cannot be completely eliminated from food and feed chains. However, scientific studies are needed to determine their true significance. Thus, the mechanism and level of toxicity as well as presence and concentration levels will have to be fully clarified. In this paper, we briefly review the prevalence of the dominant Fusarium species contaminating maize and small-grain cereals worldwide, and the current knowledge on the biological activity as well as the natural occurrence of their selected less-known toxic metabolites. Additionally, the significance of these 'other' Fusarium mycotoxins is discussed.


2011 ◽  
Vol 47 (2) ◽  
pp. 317-338 ◽  
Author(s):  
P. N. DIXIT ◽  
P. J. M. COOPER ◽  
J. DIMES ◽  
K. P. RAO

SUMMARYIn sub-Saharan Africa (SSA), rainfed agriculture is the dominant source of food production. Over the past 50 years much agronomic crop research has been undertaken, and the results of such work are used in formulating recommendations for farmers. However, since rainfall is highly variable across seasons the outcomes of such research will depend upon the rainfall characteristics of the seasons during which the work was undertaken. A major constraint that is faced by such research is the length of time for which studies could be continued, typically ranging between three and five years. This begs the question as to what extent the research was able to ‘sample’ the natural longer-term season-to-season rainfall variability. Without knowledge of the full implications of weather variability on the performance of innovations being recommended, farmers cannot be properly advised about the possible weather-induced risks that they may face over time. To overcome this constraint, crop growth simulation models such as the Agricultural Production Systems Simulator (APSIM) can be used as an integral part of field-based agronomic studies. When driven by long-term daily weather data (30+ years), such models can provide weather-induced risk estimates for a wide range of crop, soil and water management innovations for the major rainfed crops of SSA. Where access to long-term weather data is not possible, weather generators such as MarkSim can be used. This study demonstrates the value of such tools in climate risk analyses and assesses the value of the outputs in the context of a high potential maize production area in Kenya. MarkSim generated weather data is shown to provide a satisfactory approximation of recorded weather data at hand, and the output of 50 years of APSIM simulations demonstrate maize yield responses to plant population, weed control and nitrogen (N) fertilizer use that correspond well with results reported in the literature. Weather-induced risk is shown to have important effects on the rates of return ($ per $ invested) to N-fertilizer use which, across seasons and rates of N-application, ranged from 1.1 to 6.2. Similarly, rates of return to weed control and to planting at contrasting populations were also affected by seasonal variations in weather, but were always so high as to not constitute a risk for small-scale farmers. An analysis investigating the relative importance of temperature, radiation and water availability in contributing to weather-induced risk at different maize growth stages corresponded well with crop physiological studies reported in the literature.


2014 ◽  
Vol 7 (2) ◽  
pp. 217-230 ◽  
Author(s):  
S.V. Malysheva ◽  
D.A. Larionova ◽  
J. Diana Di Mavungu ◽  
S. De Saeger

This paper reports on the occurrence of ergot alkaloids in cereals and cereal products in Europe. It includes occurrence data our group previously submitted to the European Food Safety Authority and new data we gathered afterwards. A total of 1,065 samples of cereals and cereal products intended for human consumption and animal feeding were analysed by liquid chromatography-tandem mass spectrometry for the presence of ergot alkaloids. The sample set included rye-, wheat- and multigrain-based food as well as rye-, wheat- and triticale-based feed. The study revealed that 59% of the analysed food and feed samples were contaminated with ergot alkaloids to some extent. In 55% of the samples, the levels of the -ine isomers were above the limit of quantification (LOQ), while contamination with the -inine isomers was found in 51% of the samples. The median values for the main ergot alkaloids (-ine forms) and the epimers (-inine forms) were 1 and 2 μg/kg, respectively. Ergot alkaloids were present in 84% of rye food, 67% of wheat food, 48% of multigrain food, 52% of rye feed, 27% of wheat feed, and 44% of triticale feed at total alkaloid levels ranging from ≤1 (LOQ) to 12,340 μg/kg. Though the highest frequencies of contamination were observed for food samples, the feed samples, in particular Swiss rye feed, accounted for the highest levels of ergot alkaloids. The frequencies and levels of contamination were significantly lower in organic samples compared to conventional samples. Maximum levels of individual ergot alkaloids up to 3,270 μg/kg (for ergotamine) were observed. Overall, ergosine, ergokryptine and ergocristine were the frequently occurring ergot alkaloids. The co-occurrence of all six ergot alkaloids was noted in 35% of the positive samples. Occurrence of a single ergot alkaloid was mainly observed for ergometrine.


2009 ◽  
Vol 2 (2) ◽  
pp. 203-214 ◽  
Author(s):  
J. Cary ◽  
K. Rajasekaran ◽  
J. Yu ◽  
R. Brown ◽  
D. Bhatnagar ◽  
...  

Mycotoxins are fungal metabolites that can contaminate food and feed crops worldwide and are responsible for toxic effects in animals and humans that consume contaminated commodities. Regulatory guidelines and limits for mycotoxins have been set by the US Food and Drug Administration (FDA) and food safety agencies of other countries for both import and export of affected commodities. Mycotoxin contamination of foods and feeds can also cause serious economic hardships to producers, processors, and the consumer. Therefore, there has been a concerted effort by researchers worldwide to develop strategies for the effective control of mycotoxin contamination of crops, particularly at the pre-harvest stage. Strategies currently being utilised to combat pre-harvest mycotoxin contamination include: (1) use of non-toxigenic biocontrol strains; (2) improved agricultural practices; (3) application of agrochemicals; (4) plant breeding for resistance; and (5) genetic engineering of resistance genes into crop plants. This article highlights research on the genetic engineering of plants for resistance to invasion by mycotoxigenic fungi as well as detoxification of mycotoxins. Emphasis is placed on the most economically relevant fungi and the mycotoxins they produce. These include aflatoxins produced mainly by Aspergillus flavus and A. parasiticus, trichothecenes produced mainly by Fusarium graminearum, and to a lesser extent, fumonisins produced by F. verticillioides. Information is also presented on the use of genomics and proteomics technologies as a means of identifying genes and proteins that can be utilised in transgenic approaches to control the growth of mycotoxigenic fungi and the mycotoxins that they produce in food and feed crops.


Food Research ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 69-77
Author(s):  
B. Salisu ◽  
S.M. Anua ◽  
W.R. Wan Ishak ◽  
N. Mazlan

The warm weather and high relative humidity in Malaysia are ideal for the survival and proliferation of mycotoxigenic fungi leading to a high rate of stored product contamination. This study was conducted to enumerate and characterise the mycotoxigenic fungi associated with commonly consumed food grains in Kelantan, Malaysia. The fungal bioburden and fungal identification from forty-four composite food samples comprising 11 samples each of maize, wheat, rice, and peanuts from open markets in Kelantan, Malaysia, were determined using standard mycological techniques. A total of 115 mould fungal isolates belonging to 12 species were isolated, of which Aspergillus flavus (17.39%), A. versicolor (13.04%), A. felis (12.17%), Neoscytalidium dimidiatum (11.3%), Penicillium cheresanum (11.3%) and P. chrysogenum (8.7%), were predominant. Peanuts were the most contaminated (9.7×105 ± 1.5×105 CFU/g) followed by maize (7.5×105 ± 1.8×106 CFU/g), wheat (1.9×105 ± 2.6×105 CFU/g), and rice (9.9×104 ± 1.5×105 CFU/g). The levels of the mycotoxigenic fungi in peanut, maize, and wheat were above the permissible limit of 102 CFU/g set by the Malaysian Ministry of Health and 102 to 105 CFU/g set by the International Commission for Microbiological Specification for Foods, signifying that they are unsafe for use as food or feed ingredients. Hence, there is a need for more stringent control measures.


Sign in / Sign up

Export Citation Format

Share Document