scholarly journals First Detection of Bat Astroviruses (BtAstVs) among Bats in Poland: The Genetic BtAstVs Diversity Reveals Multiple Co-Infection of Bats with Different Strains

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 158
Author(s):  
Anna Orłowska ◽  
Marcin Smreczak ◽  
Patrycja Potyrało ◽  
Arkadiusz Bomba ◽  
Paweł Trębas ◽  
...  

Background: Astroviruses (AstVs) are common pathogens of a wide range of animal hosts, including mammals and avians, causing gastrointestinal diseases, mainly gastroenteritis and diarrhea. They prompt a significant health problem in newborns and young children and economic losses in the poultry sector and mink farms. Recent studies revealed a growing number of bat species carrying astroviruses with a noticeable prevalence and diversity. Here, we demonstrate the first detection of bat astroviruses (BtAstVs) circulating in the population of insectivorous bats in the territory of Poland. Results: Genetically diverse BtAstVs (n = 18) were found with a varying degree of bat species specificity in five out of 15 bat species in Poland previously recognized as BtAstV hosts. Astroviral RNA was found in 12 out of 98 (12.2%, 95% CI 7.1–20.2) bat intestines, six bat kidneys (6.1%, 95% CI 2.8–12.7) and two bat livers (2.0%, 95% CI 0.4–7.1). Deep sequencing of the astroviral RNA-dependent RNA polymerase (RdRp) region revealed co-infections in five single bat individuals with highly distinct astrovirus strains. Conclusions: The detection of highly distinct bat astroviruses in Polish bats favors virus recombination and the generation of novel divergent AstVs and creates a potential risk of virus transmission to domestic animals and humans in the country. These findings provide a new insight into molecular epidemiology, prevalence of astroviruses in European bat populations and the risk of interspecies transmission to other animals including humans.

PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6258 ◽  
Author(s):  
Deric R. Learman ◽  
Zahra Ahmad ◽  
Allison Brookshier ◽  
Michael W. Henson ◽  
Victoria Hewitt ◽  
...  

A total of 16 different strains ofMicrobacteriumspp. were isolated from contaminated soil and enriched on the carcinogen, hexavalent chromium [Cr(VI)]. The majority of the isolates (11 of the 16) were able to tolerate concentrations (0.1 mM) of cobalt, cadmium, and nickel, in addition to Cr(VI) (0.5–20 mM). Interestingly, these bacteria were also able to tolerate three different antibiotics (ranges: ampicillin 0–16 μg ml−1, chloramphenicol 0–24 μg ml−1, and vancomycin 0–24 μg ml−1). To gain genetic insight into these tolerance pathways, the genomes of these isolates were assembled and annotated. The genomes of these isolates not only have some shared genes (core genome) but also have a large amount of variability. The genomes also contained an annotated Cr(VI) reductase (chrR) that could be related to Cr(VI) reduction. Further, various heavy metal tolerance (e.g., Co/Zn/Cd efflux system) and antibiotic resistance genes were identified, which provide insight into the isolates’ ability to tolerate metals and antibiotics. Overall, these isolates showed a wide range of tolerances to heavy metals and antibiotics and genetic diversity, which was likely required of this population to thrive in a contaminated environment.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 298
Author(s):  
Yuzhong Zhao ◽  
Fachao Sun ◽  
Li Li ◽  
Ting Chen ◽  
Shengliang Cao ◽  
...  

Pigs are considered a “mixing vessel” that can produce new influenza strains through genetic reassortments, which pose a threat to public health and cause economic losses worldwide. The timely surveillance of the epidemiology of the swine influenza virus is of importance for prophylactic action. In this study, 15 H1N1, one H1N2, and four H3N2 strains were isolated from a total of 4080 nasal swabs which were collected from 20 pig farms in three provinces in China between 2016 and 2019. All the isolates were clustered into four genotypes. A new genotype represented by the H1N2 strain was found, whose fragments came from the triple reassortant H1N2 lineage, classical swine influenza virus (cs-H1N1) lineage, and 2009 H1N1 pandemic virus lineage. A/Sw/HB/HG394/2018(H1N1), which was clustered into the cs-H1N1 lineage, showed a close relationship with the 1918 pandemic virus. Mutations determining the host range specificity were found in the hemagglutinin of all isolates, which indicated that all the isolates had the potential for interspecies transmission. To examine pathogenicity, eight isolates were inoculated into 6-week-old female BALB/c mice. The isolates replicated differently, producing different viral loadings in the mice; A/Swine/HB/HG394/2018(H1N1) replicated the most efficiently. This suggested that the cs-H1N1 reappeared, and more attention should be given to the new pandemic to pigs. These results indicated that new reassortments between the different strains occurred, which may increase potential risks to human health. Continuing surveillance is imperative to monitor swine influenza A virus evolution.


2020 ◽  
Vol 3 ◽  
pp. 1-16
Author(s):  
Hongkun Quan ◽  
Zonghui Zuo ◽  
Ahrar Khan ◽  
Naila Siddique ◽  
Cheng He

Bacillus cereus (B. cereus) is a novel emerging pathogen contaminated extensively in animal feed and food chains, posing a huge economic loss for animal industry and high risk for human health. This pathogen is a robust omnipresent heat resistant spore former, able to form biofilm and isolated from different environments such as food and atmosphere that occur all year round without any particular geographic distribution. The potential of survival for B. cereus spores in unfavorable conditions pose a considerable threat to food safety and also cause economic losses to the food industry. B. cereus aggravates acute diarrhea and malnourishment in poultry by inducing gizzard erosion and ulceration (GEU). It will facilitate persistent other bacterial infection in the lungs via damaging gastric intestine tract. Also, it can cause serious food safety because it seems difficult to fully prevent their presence in food. It may cause gastrointestinal diseases that trigger emetic and diarrheal symptoms as well as general and local infections related to the respiratory tracts of immunologically threatened individual and newborns. B. cereus produces a wide range of potential virulence factors, including heat stable/labile toxins (cerulide, NHE, HBL, CytK, Ent-FM, bc-D-ENT, CLO, HlyII, HlyIII) and tissue-destructive enzymes (PI-PLC, PC-PLC, SMase, β-lactamase, InhA1, NprA), but their roles and molecular mechanism in specific infections have not been clarified yet. This review provided a historical record of possible risk factors and pathogenesis of animal industry and highlights the implications for animal industry and food safety by ingestion of the feed-borne Bacillus cereus.


2020 ◽  
Vol 29 (3S) ◽  
pp. 631-637
Author(s):  
Katja Lund ◽  
Rodrigo Ordoñez ◽  
Jens Bo Nielsen ◽  
Dorte Hammershøi

Purpose The aim of this study was to develop a tool to gain insight into the daily experiences of new hearing aid users and to shed light on aspects of aided performance that may not be unveiled through standard questionnaires. Method The tool is developed based on clinical observations, patient experiences, expert involvement, and existing validated hearing rehabilitation questionnaires. Results An online tool for collecting data related to hearing aid use was developed. The tool is based on 453 prefabricated sentences representing experiences within 13 categories related to hearing aid use. Conclusions The tool has the potential to reflect a wide range of individual experiences with hearing aid use, including auditory and nonauditory aspects. These experiences may hold important knowledge for both the patient and the professional in the hearing rehabilitation process.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 645 ◽  
Author(s):  
Hamed K. Abbas ◽  
Nacer Bellaloui ◽  
Cesare Accinelli ◽  
James R. Smith ◽  
W. Thomas Shier

Charcoal rot disease, caused by the fungus Macrophomina phaseolina, results in major economic losses in soybean production in southern USA. M. phaseolina has been proposed to use the toxin (-)-botryodiplodin in its root infection mechanism to create a necrotic zone in root tissue through which fungal hyphae can readily enter the plant. The majority (51.4%) of M. phaseolina isolates from plants with charcoal rot disease produced a wide range of (-)-botryodiplodin concentrations in a culture medium (0.14–6.11 µg/mL), 37.8% produced traces below the limit of quantification (0.01 µg/mL), and 10.8% produced no detectable (-)-botryodiplodin. Some culture media with traces or no (-)-botryodiplodin were nevertheless strongly phytotoxic in soybean leaf disc cultures, consistent with the production of another unidentified toxin(s). Widely ranging (-)-botryodiplodin levels (traces to 3.14 µg/g) were also observed in the roots, but not in the aerial parts, of soybean plants naturally infected with charcoal rot disease. This is the first report of (-)-botryodiplodin in plant tissues naturally infected with charcoal rot disease. No phaseolinone was detected in M. phaseolina culture media or naturally infected soybean tissues. These results are consistent with (-)-botryodiplodin playing a role in the pathology of some, but not all, M. phaseolina isolates from soybeans with charcoal rot disease in southern USA.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 241
Author(s):  
Joon Moh Park ◽  
Jachoon Koo ◽  
Se Won Kang ◽  
Sung Hee Jo ◽  
Jeong Mee Park

Rhodococcus fascians is an important pathogen that infects various herbaceous perennials and reduces their economic value. In this study, we examined R. fascians isolates carrying a virulence gene from symptomatic lily plants grown in South Korea. Phylogenetic analysis using the nucleotide sequences of 16S rRNA, vicA, and fasD led to the classification of the isolates into four different strains of R. fascians. Inoculation of Nicotiana benthamiana with these isolates slowed root growth and resulted in symptoms of leafy gall. These findings elucidate the diversification of domestic pathogenic R. fascians and may lead to an accurate causal diagnosis to help reduce economic losses in the bulb market.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 950
Author(s):  
Cecilia Righi ◽  
Stefano Petrini ◽  
Ilaria Pierini ◽  
Monica Giammarioli ◽  
Gian Mario De Mia

Border disease virus (BDV) belongs to the genus Pestivirus of the family Flaviviridae. Interspecies transmission of BDV between sheep, cattle, and pigs occurs regularly, sometimes making diagnosis a challenge. BDV can yield substantial economic losses, including prenatal and postnatal infections in lambs, which are the primary source of infection and maintenance of the virus in the population. Since BDV is antigenically and genetically related to bovine viral diarrhea virus (BVDV), it might pose a significant risk to cattle, influencing BVDV eradication campaigns. Similarly, the presence of BDV in swine herds due to pestivirus spillover between small ruminants and pigs might cause uncertainty in classical swine fever virus (CSFV) diagnostics. Therefore, knowledge of BDV epidemiology in different geographical regions will help prevent its spread and optimize control measures. Previous epidemiological studies have shown that various BDV genotypes are predominant in different countries. This review provides an overview of the spread of BDV world-wide in different host species.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1001
Author(s):  
Rui Huang ◽  
David C. Luther ◽  
Xianzhi Zhang ◽  
Aarohi Gupta ◽  
Samantha A. Tufts ◽  
...  

Nanoparticles (NPs) provide multipurpose platforms for a wide range of biological applications. These applications are enabled through molecular design of surface coverages, modulating NP interactions with biosystems. In this review, we highlight approaches to functionalize nanoparticles with ”small” organic ligands (Mw < 1000), providing insight into how organic synthesis can be used to engineer NPs for nanobiology and nanomedicine.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2566
Author(s):  
Boris A. Boom ◽  
Alessandro Bertolini ◽  
Eric Hennes ◽  
Johannes F. J. van den Brand

We present a novel analysis of gas damping in capacitive MEMS transducers that is based on a simple analytical model, assisted by Monte-Carlo simulations performed in Molflow+ to obtain an estimate for the geometry dependent gas diffusion time. This combination provides results with minimal computational expense and through freely available software, as well as insight into how the gas damping depends on the transducer geometry in the molecular flow regime. The results can be used to predict damping for arbitrary gas mixtures. The analysis was verified by experimental results for both air and helium atmospheres and matches these data to within 15% over a wide range of pressures.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1546
Author(s):  
Marta Budziszewska ◽  
Patryk Frąckowiak ◽  
Aleksandra Obrępalska-Stęplowska

Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurseries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of PSV infection were not observed. The results have shown that larvae of B. impatiens could acquire the virus and transmit it to healthy plants. Moreover, it has been proven that PSV might persist in the insect body transstadially. Although the molecular mechanisms of virion acquisition and retention during insect development need further studies, this is the first report on B. impatiens playing a potential role in plant virus transmission.


Sign in / Sign up

Export Citation Format

Share Document