scholarly journals Alterations in the Expression Profile of Serum miR-155, miR-223, miR-17, miR-200a, miR-205, as well as Levels of Interleukin 6, and Prostaglandins during Endometritis in Arabian Mares

2021 ◽  
Vol 8 (6) ◽  
pp. 98
Author(s):  
Sally Ibrahim ◽  
Mohamed Hedia ◽  
Mohamed O. Taqi ◽  
Mohamed K. Derbala ◽  
Karima Gh. M. Mahmoud ◽  
...  

So far the intimate link between serum microRNA (miRNA) and uterine inflammation in mares is unknown. We aimed (I) to investigate expression profile of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205 (II) and to measure concentrations of interleukin 6 (IL-6), and prostaglandins (PGF2α and PGE2) in serum of mares with healthy and abnormal uterine status (endometritis). This study was conducted on 80 Arabian mares: young (4–7 years), and old (8–14 years). Mares were divided into 48 sub-fertile (endometritis) and 32 fertile (control) at stud farms. Serum was collected for measuring IL-6, PGF2α, and PGE2, as well as miRNA isolation and qRT-PCR. Concentrations of IL-6, PGE2, and PGF2α were higher in mares with endometritis compared to control. Age of mares had a remarkable effect on IL-6, PGE2, and PGF2α concentrations. Relative abundance of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205 was higher in both young and old mares with endometritis. We noticed that eca-miR-155, eca-miR-223, eca-miR-200a, and eca-miR-205 revealed higher expression level in old than young mares with endometritis. This is the first study that has revealed the changes in cell free miRNA and serum inflammatory mediators during endometritis, and these findings could be used for a better understanding the pathophysiology mechanisms of endometritis in equine.

2021 ◽  
Author(s):  
Sally Ibrahim ◽  
Mohamed Hedia ◽  
Mohamed O. Taqi ◽  
Mohamed K. Derbala ◽  
karima mahmoud ◽  
...  

Abstract Background: So far the intimate link between serum microRNA (miRNA) and uterine inflammation in mares is unknown. We aimed (I) to investigate the expression profile of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205 (II) and to measure the concentrations of interleukin 6 (IL-6), and prostaglandins (PGF2α& PGE2) in serum of Arabian mares with healthy and abnormal uterine status (endometritis).Methods and Results: This study was conducted on 80 Arabian mares; young (4-7 years), and old (8-14 years). These animals were divided into 48 sub-fertile including 16 young and 32 old mares suspected of endometritis and 32 fertile as control (24 young and 8 old) at stud farms. Serum samples were collected for measuring IL-6, PGF2α, and PGE2 concentrations, as well as serum miRNA isolation and qRT-PCR. Serum concentrations of IL-6, PGE2, and PGF2α were higher (P≤0.001) in mares with endometritis (young and old) compared to the control ones. Age of mares had a remarkable effect(0.001≤P≤0.01) onIL-6, PGE2, and PGF2αconcentrations. The relative abundance of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205 was higher (P≤0.001) in both young and old mares with endometritis. We noticed that eca-miR-155, eca-miR-223, eca-miR-200a, and eca-miR-205 revealed higher (0.001≤P≤0.01) expression level in old than young mares with endometritis. Conclusions: To the best of our knowledge, this is the first study revealed that serum miRNA and serum inflammatory mediators (IL-6, PGE2, and PGF2α) could be used as non-invasive gold standard biomarkers, and therefore might be served as an important additional diagnostic tool for endometritis in Arabian mares.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5363 ◽  
Author(s):  
Huihui Ren ◽  
Zhelong Liu ◽  
Siyue Liu ◽  
Xinrong Zhou ◽  
Hong Wang ◽  
...  

Background Differently expressed circular RNAs (circRNAs) have been reported to play a considerable role in tumor behavior; however, the expression profile and biological function of circRNAs in papillary thyroid carcinoma (PTC) remains unknown. Thus, the study was aimed to characterize the circRNA expression profile to comprehensively understand the biological behavior of PTC. Methods We investigated the expression profile of circRNAs using circRNA microarray in three pairs of PTC and adjacent normal tissues. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to validate eight candidate circRNAs in 40 paired PTC tumors and adjacent normal samples. Next, we employed a bioinformatics tool to identify putative miRNA and circRNA-associated downstream genes, followed by constructing a network map of circRNA-miRNA-mRNA interactions and exploring the potential role of the candidate circRNAs. Results In total, 206 up- and 177 downregulated circRNAs were identified in PTC tissues (fold change >1.5; P < 0.05). The expression levels of eight candidate circRNAs confirmed by qRT-PCR were significantly different between the PTC and normal samples. The downstream genes of candidate circRNAs participated in various biological processes and signaling pathways. The most up and downregulated circRNAs were hsa_circRNA_007148 and hsa_circRNA_047771. The lower expression level of hsa_circRNA_047771 was associated BRAFV600 mutation, lymph node metastasis (LNM), as well as with advanced TNM stage (all P < 0.05). The higher expression level of hsa_circRNA_007148 was significantly correlated with LNM (P < 0.05). The areas under receiver operating curve were 0.876 (95% CI [0.78–0.94]) for hsa_circRNA_047771 and 0.846 (95% CI [0.75–0.96]) for hsa_circRNA_007148. Discussion The study suggests that dysregulated circRNAs play a critical role in PTC pathogenesis. PTC-related hsa_circRNA_047771 and hsa_circRNA_007148 may serve as potential diagnostic biomarkers and prognostic predictors for PTC patients.


Author(s):  
Wuping Yang ◽  
Kenan Zhang ◽  
Lei Li ◽  
Yawei Xu ◽  
Kaifang Ma ◽  
...  

Abstract Background Emerging evidence confirms that lncRNAs (long non-coding RNAs) are potential biomarkers that play vital roles in tumors. ZNF582-AS1 is a novel lncRNA that serves as a potential prognostic marker of cancers. However, the specific clinical significance and molecular mechanism of ZNF582-AS1 in ccRCC (clear cell renal cell carcinoma) are unclear. Methods Expression level and clinical significance of ZNF582-AS1 were determined by TCGA-KIRC data and qRT-PCR results of 62 ccRCCs. DNA methylation status of ZNF582-AS1 promoter was examined by MSP, MassARRAY methylation and demethylation analysis. Gain-of-function experiments were conducted to investigate the biological roles of ZNF582-AS1 in the phenotype of ccRCC. The subcellular localization of ZNF582-AS1 was detected by RNA FISH. iTRAQ, RNA pull-down and RIP-qRT-PCR were used to identify the downstream targets of ZNF582-AS1. rRNA MeRIP-seq and MeRIP-qRT-PCR were utilized to examine the N(6)-methyladenosine modification status. Western blot and immunohistochemistry assays were used to determine the protein expression level. Results ZNF582-AS1 was downregulated in ccRCC, and decreased ZNF582-AS1 expression was significantly correlated with advanced tumor stage, higher pathological stage, distant metastasis and poor prognosis. Decreased ZNF582-AS1 expression was caused by DNA methylation at the CpG islands within its promoter. ZNF582-AS1 overexpression inhibited cell proliferative, migratory and invasive ability, and increased cell apoptotic rate in vitro and in vivo. Mechanistically, we found that ZNF582-AS1 overexpression suppressed the N(6)-methyladenosine modification of MT-RNR1 by reducing rRNA adenine N(6)-methyltransferase A8K0B9 protein level, resulting in the decrease of MT-RNR1 expression, followed by the inhibition of MT-CO2 protein expression. Furthermore, MT-RNR1 overexpression reversed the decreased MT-CO2 expression and phenotype inhibition of ccRCC induced by increased ZNF582-AS1 expression. Conclusions This study demonstrates for the first time that ZNF582-AS1 functions as a tumor suppressor gene in ccRCC and ZNF582-AS1 may serve as a potential biomarker and therapeutic target of ccRCC.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J Roessler ◽  
F Zimmermann ◽  
D Schmidt ◽  
U Escher ◽  
A Jasina ◽  
...  

Abstract Background and aims The modulation of serum lipids, in particular of the low-density lipoprotein cholesterol (LDL-C), by statins varies between individuals. The mechanisms regulating this interindividual variation are only poorly understood. Here, we investigated the relation between the gut microbiome and the regulatory properties of atorvastatin on the serum lipidome using mice with depleted gut microbiome. Methods Over a period of 6 weeks, mice (C57BL/6) with either an intact (conventional mice, CONV, n=24) or antibiotic-based depleted gut microbiome (antibiotic treated mice, ABS, n=16) were put on standard chow diet (SCD) or high fat diet (HFD), respectively. During the last 4 weeks of treatment atorvastatin (Ator, 10mg/kg body weight/day) or control vehicle was administered via daily oral gavage. Blood lipids (total cholesterol, VLDL, LDL-C, HDL-C) and serum sphingolipids were compared among the groups. The expressions of hepatic and intestinal genes involved in cholesterol metabolism were analyzed by qRT-PCR. Alterations in the gut microbiota profile of mice with intact gut microbiome were examined using 16S RNA qRT-PCR. Results In CONV mice, HFD led to significantly increased blood LDL-C levels as compared with SCD (HFD: 36.8±1.4 mg/dl vs. SCD: 22.0±1.8 mg/dl; P&lt;0.01). In CONV mice atorvastatin treatment significantly reduced blood LDL-C levels after HFD, whereas in ABS mice the LDL-C lowering effect of atorvastatin was markedly attenuated (CONV+HFD+Ator: 31.0±1.8 mg/dl vs. ABS+HFD+Ator: 46.4±3 mg/dl; P&lt;0.01). A significant reduction in the abundance of several plasma lipids, in particular sphingolipids and glycerophospholipids upon atorvastatin treatment was observed in CONV mice, but not in ABS mice. The expressions of distinct hepatic and intestinal cholesterol-regulating genes (ldlr, srebp2, pcsk9 and npc1l1) upon atorvastatin treatment were significantly altered in gut microbiota depleted mice. In response to HFD a decrease in the relative abundance of the bacterial phyla Bacteroides and an increase in the relative abundance of Firmicutes was observed. The altered ratio between Bacteroides and Firmicutes in HFD fed mice was partly reversed upon atorvastatin treatment. Conclusions Our findings indicate a crucial role of the gut microbiome for the regulatory properties of atorvastatin on the serum lipidome and, in turn, support a critical impact of atorvastatin on the gut microbial composition. The results provide novel insights into potential microbiota related mechanisms underlying interindividual variation in modulation of the serum lipidome by statins, given interindividual differences in microbiome composition and function. Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): German Heart Research Foundation


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 344
Author(s):  
Paul Kubelac ◽  
Cornelia Braicu ◽  
Lajos Raduly ◽  
Paul Chiroi ◽  
Andreea Nutu ◽  
...  

The Hippo signaling pathway, one of the most conserved in humans, controlling dimensions of organs and tumor growth, is frequently deregulated in several human malignancies, including ovarian cancer (OC). The alteration of Hippo signaling has been reported to contribute to ovarian carcinogenesis and progression. However, the prognostic roles of individual Hippo genes in OC patients remain elusive. Herein we investigated the expression level and prognostic value of key Hippo genes in OC using online databases, followed by a qRT-PCR validation step in an additional patient cohort. Using the GEPIA database, we observed an increased level for TP53 and reduced expression level for LATS1, LATS2, MST1, TAZ, and TEF in tumor tissue versus normal adjacent tissue. Moreover, LATS1, LATS2, TP53, TAZ, and TEF expression levels have prognostic significance correlated with progression-free survival. The qRT-PCR validation step was conducted in an OC patient cohort comprising 29 tumor tissues and 20 normal adjacent tissues, endorsing the expression level for LATS1, LATS2, and TP53, as well as for two of the miRNAs targeting the TP53 gene, revealing miR-25-3p upregulation and miR-181c-5p downregulation. These results display that there are critical prognostic value dysregulations of the Hippo genes in OC. Our data demonstrate the major role the conserved Hippo pathway presents in tumor control, underlying potential therapeutic strategies and controlling several steps modulated by miRNAs and their target genes that could limit ovarian cancer progression.


2010 ◽  
Vol 138 (5) ◽  
pp. S-173-S-174
Author(s):  
Solange M. Abdulnour-Nakhoul ◽  
Youhanna S. Al-Tawil ◽  
Alexandra P. Eidelwein ◽  
Robert A. Noel ◽  
Molly Hansen ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246752
Author(s):  
Maryam Asadi ◽  
Nahid Ahmadi ◽  
Simin Ahmadvand ◽  
Ali Akbar Jafari ◽  
Akbar Safaei ◽  
...  

Among cancer treatment methods, targeted therapy using cancer-associated biomarkers has minimum side effects. Recently olfactory receptor (OR) family attracts the researcher’s attention as a favorable biomarker of cancer. Here, a statistical approach using complete data from the human protein atlas database was used to evaluate the potential of OR51J1 gene as a cancer-associated biomarker. To confirm the findings of statistical analysis, the OR51J1 mRNA and protein expression levels in breast tumor and normal tissue were measured using quantitative Real Time PCR (qRT-PCR) and immunohistochemistry (IHC) techniques. The association with clinicopathological factors was analyzed. Statistical analysis revealed that OR51J1 has a high expression level in more than 20 types of cancer tissues without any expression in 44 normal tissues. In 15 cancer types, including breast cancer, expression score was more than 90%. The qRT-PCR analysis in breast cancer showed OR51J1 have significantly higher expression level in tumors than normal tissues (2.91 fold). The IHC results showed OR51J1 expression on other cellular subtypes than tumor and normal cells, including myoepithelium, fibroblast, and lymphocytes. OR51J1 protein expression in invasive cells, as well as its overall score, showed a significant correlation with ER and PR expression and breast cancer (BC) subtypes. Results revealed the potential of OR51J1 as a cancer-associated biomarker for the diagnosis of breast cancer at the mRNA level.


2021 ◽  
Author(s):  
Ke Zuo ◽  
Xiaoying Yuan ◽  
Xizi Liang ◽  
Xiangjie Sun ◽  
Shujin Liu ◽  
...  

Abstract PurposeCumulative evidences suggested the addition of platinum agents as neoadjuvant chemotherapy (NACT) could improve pathologic complete response (pCR) in triple-negative breast cancers (TNBC). We tried to develop a DNA homologous recombination (HR) associated gene expression score to predict tumor sensitivity to platinum-based NACT in TNBC.MethodsA retrospective cohort of 127 TNBC patients, who were diagnosed and received platinum-based NACT in Fudan University Shanghai Cancer Center from 2012 to 2017, was included in this study. By using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), the expression level of eight HR associated genes was analyzed from the formalin-fixed paraffin-embedded core needle biopsy samples which obtained before NACT. A random forest model was built to estimate the weight of each gene expression level and clinical-pathological factors. The training set was used to modulate parameters and select the best model. The performance of the final model was evaluated in the validation set. ResultsA 4-gene (BRCA1, XRCC5, PARP1, RAD51) expression scoring system was developed. TNBC with higher score had nearly quadruple likelihood to achieve pCR to platinum-based NACT compared with a lower score [odds ratio (OR)=3.878; P<0.001]. At the cut-off value of -2.644, the 4-gene score system showed high sensitivity in predicting pCR in breast (93.0%) and pCR in both breast/axilla (91.8%), while, at the cut-off value of -1.969, the 4-gene score showed high specificity for pCR in breast (85.7%) and pCR in both breast/axilla (80.8%). ConclusionThe qRT-PCR-based 4-gene score has the potential to predict pCR to platinum-based NACT in TNBC.


2021 ◽  
Vol 20 (9) ◽  
pp. 1845-1853
Author(s):  
Qinfeng Han ◽  
Zhong Xu ◽  
Xiaolei Zhang ◽  
Kun Yang ◽  
Zhifei Sun ◽  
...  

Purpose: To investigate the effect of miR-486 on rats with acute myocardial infarction (AMI), and its mechanism of action.Methods: A rat model of AMI was established. They were randomly divided into 4 groups, namely, sham, model, agomiR-486 and antagomiR-486 groups, respectively. Rats in these different groups were treated with agomiR-21 (5 μL, 40 nmol/mL), antagomiR-21 (5 μL, 40 nmol/mL) or agomiR-NC (5 μL, 40 nmol/mL), respectively. Then, key miRNAs were sorted out using gene-chip assay and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. Luciferase reporter gene assay was conducted to determine the interaction between miR-486 and gene of PTEN. After intraperitoneal injection of agomiR-486 and antagomiR-486, hemodynamics was measured to determine the effect of miR-486 on myocardial function of the rats. The effect of miR-486 expression level on the expression of myocardial enzymes in serum, the morphology of myocardial tissues, and the apoptosis of myocardial tissues in rats, were investigated. Additionally, the effect of miR-486 expression level on PTEN/AKT signaling pathway in the rats was determined by Western blotting.Results: The results of gene-chip and qRT-PCR assays revealed that there were 8 differentially expressed genes in rat myocardial tissues in the model group when compared with the sham group. MiR-486 improved the cardiac function of rats and the morphology of myocardial tissues, but reduced AMI-induced apoptosis of myocardial cells and the expression of myocardial enzymes (markers of myocardial injury) in a dose-dependent manner (p < 0.05). The results of luciferase reporter gene assay showed that PTEN was a direct target of miR-486. In rat models of AMI, a raised expression of miR-486 remarkably suppressed the protein expression level of PTEN and up-regulated that of p-AKT/AKT (p < 0.05).Conclusion: MiR-486 protects against AMI in rats probably by targeting PTEN and activating the AKT signaling pathway. The results of the current study may provide new insights for the treatment of AMI.


2018 ◽  
Vol 120 (1) ◽  
pp. 64-73 ◽  
Author(s):  
Dongli Liu ◽  
Andrew Costanzo ◽  
Margaret D. M. Evans ◽  
Nicholas S. Archer ◽  
Caryl Nowson ◽  
...  

AbstractSignificant experimental evidence supports fat as a taste modality; however, the associated peripheral mechanisms are not well established. Several candidate taste receptors have been identified, but their expression pattern and potential functions in human fungiform papillae remain unknown. The aim of this study is to identify the fat taste candidate receptors and ion channels that were expressed in human fungiform taste buds and their association with oral sensory of fatty acids. For the expression analysis, quantitative RT-PCR (qRT-PCR) from RNA extracted from human fungiform papillae samples was used to determine the expression of candidate fatty acid receptors and ion channels. Western blotting analysis was used to confirm the presence of the proteins in fungiform papillae. Immunohistochemistry analysis was used to localise the expressed receptors or ion channels in the taste buds of fungiform papillae. The correlation study was analysed between the expression level of the expressed fat taste receptors or ion channels indicated by qRT-PCR and fat taste threshold, liking of fatty food and fat intake. As a result, qRT-PCR and western blotting indicated that mRNA and protein of CD36, FFAR4, FFAR2, GPR84 and delayed rectifying K+ channels are expressed in human fungiform taste buds. The expression level of CD36 was associated with the liking difference score (R −0·567, β=−0·04, P=0·04) between high-fat and low-fat food and FFAR2 was associated with total fat intake (ρ=−0·535, β=−0·01, P=0·003) and saturated fat intake (ρ=−0·641, β=−0·02, P=0·008).


Sign in / Sign up

Export Citation Format

Share Document