scholarly journals The Mechanical Properties of High Strength Reinforced Cured-in-Place Pipe (CIPP) Liner Composites for Urban Water Infrastructure Rehabilitation

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 983 ◽  
Author(s):  
Hyun Ji ◽  
Sung Yoo ◽  
Jonghoon Kim ◽  
Dan Koo

Most urban areas in the world have water infrastructure systems, including the buried sewer and water pipelines, which are assessed as in need of extensive rehabilitation. Deterioration by many other factors affects structural integrity. Trenchless technologies such as Cured-in-Place Pipe (CIPP) are now applied in numerous projects while minimizing disturbance in an urban environment. The main purpose of this study is to develop a high strength CIPP material using various composite materials (e.g., glass fiber, carbon fiber, polyester felt, unsaturated polyester resin, and others). Composite samples were made of the materials and tested using three-point bend apparatus to find mechanical properties, which include the flexural modulus, strength, and deflection. A composite combination with glass fibers with thin felt layers shows the best results in mechanical properties. Flexural modulus is a key factor for CIPP liner thickness design. Glass fiber composite yields between four and nine times higher values than the minimum value specified in the American Society for Testing and Materials (ASTM) F1216. This study provides a fundamental baseline for high strength CIPP liners that are capable of using conventional curing technologies.


2019 ◽  
Vol 24 ◽  
pp. 1-7
Author(s):  
Md. Naimul Islam ◽  
Harun Ar-Rashid ◽  
Farhana Islam ◽  
Nanda Karmaker ◽  
Farjana A. Koly ◽  
...  

E-glass fiber mat reinforced Unsaturated Polyester Resin (UPR)-based composites were fabricated by conventional hand lay-up technique. The fiber content was varied from 5 to 50% by weight. Mechanical properties (tensile and bending) of the fabricated composites were investigated. The tensile strength (TS) of the 5% and 50% fiber reinforced composites was 32 MPa and 72 MPa, respectively. Similarly, tensile modulus, bending strength and bending modulus of the composites were increased by the increase of fiber loading. Interfacial properties of the composites were investigated by scanning electron microscopy (SEM) and the results revealed that the interfacial bond between fiber and matrix was excellent. Keywords: Unsaturated Polyester Resin, Mechanical Properties, E-glass Fibers, Composites, Polymer.



Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3189 ◽  
Author(s):  
Annandarajah ◽  
Langhorst ◽  
Kiziltas ◽  
Grewell ◽  
Mielewski ◽  
...  

: In the recent years, automakers have been striving to improve the carbon footprint of their vehicles. Sustainable composites, consisting of natural fibers, and/or recycled polymers have been developed as a way to increase the “green content” and reduce the weight of a vehicle. In addition, recent studies have found that the introduction of synthetic fibers to a traditional fiber composite such as glass filled plastics, producing a composite with multiple fillers (hybrid fibers), can result in superior mechanical properties. The objective of this work was to investigate the effect of hybrid fibers on characterization and material properties of polyamide-6 (PA6)/polypropylene (PP) blends. Cellulose and glass fibers were used as fillers and the mechanical, water absorption, and morphological properties of composites were evaluated. The addition of hybrid fibers increased the stiffness (tensile and flexural modulus) of the composites. Glass fibers reduced composite water absorption while the addition of cellulose fibers resulted in higher composite stiffness. The mechanical properties of glass and cellulose filled PA6/PP composites were optimized at loading levels of 15 wt% glass and 10 wt% cellulose, respectively.



2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Yasuhiro Tanimoto ◽  
Toshihiro Inami ◽  
Masaru Yamaguchi ◽  
Kazutaka Kasai ◽  
Norio Hirayama ◽  
...  

In this work, we investigated the properties of a glass-fiber-reinforced thermoplastic (GFRTP) composed of small-diameter (ϕ = 5 μm), high-strength glass (T-glass) fibers and polycarbonate for esthetic orthodontic wires formed using pultrusion. After fabricating such GFRTP round wires, the effects of varying fiber diameter (5 to 13 mm) on the mechanical properties, durabilities, and color stabilities were evaluated. The results showed that the mechanical properties of GFRTPs tend to increase with decreasing fiber diameter. Additionally, it was confirmed that the present GFRTP wires containing T-glass fibers have better flexural properties than previously reported GFRTP wires containing E-glass fibers. Meanwhile, thermocycling did not significantly affect the flexural properties of the GFRTP wires. Furthermore, the GFRTP wires showed color changes lower than the acceptable threshold level for color differences on immersion in coffee. From these results obtained in the present work, the GFRTP wires containing high-strength glass fibers have excellent properties for orthodontic applications. Our findings suggest that the GFRTPs might be applied to all phases of orthodontic treatment because their properties can be tuned by changing the fiber properties such as fiber type and diameter.



2014 ◽  
Vol 592-594 ◽  
pp. 339-343 ◽  
Author(s):  
S. Sathish ◽  
T. Ganapathy ◽  
Thiyagarajan Bhoopathy

In recent trend, the most used fiber reinforced composite is the glass fiber composite. The glass-fiber composites have high strength and mechanical properties but it is costlier than sisal and jute fiber. Though the availability of the sisal and jute fiber is more, it cannot be used for high strength applications. A high strength-low cost fiber may serve the purpose. This project focuses on the experimental testing of hybrid composite materials. The hybrid composite materials are manufactured using three different fibers - sisal, glass and jute with epoxy resin with weight ratio of fiber to resin as 30:70. Four combinations of composite materials viz., sisal-epoxy, jute-epoxy, sisal-glass-epoxy and sisal-jute-epoxy are manufactured to the ASTM (American Society for Testing and Materials) standards. The specimens are tested for their mechanical properties such as tensile and impact strength in Universal Testing machine. The results are compared with that of the individual properties of the glass fiber, sisal fiber, jute fiber composite and improvements in the strength-weight ratio and mechanical properties are studied.



Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2211
Author(s):  
S.M. Sapuan ◽  
H.S. Aulia ◽  
R.A. Ilyas ◽  
A. Atiqah ◽  
T.T. Dele-Afolabi ◽  
...  

This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites.



2018 ◽  
Author(s):  
◽  
Saad Ramadhan Ahmed

Selecting materials for harsh or extreme environmental conditions can be a challenge. The combination of a harsh environment, large forces over extended periods and the need for lowest possible cost restricts the choice of materials. One potential material is glass fiber reinforced polymers that are widely used in structural systems as load bearing elements, they are relatively low cost and can be tailored to achieve a range of mechanical properties. This investigation presents the preparation of transparent glass fiber reinforced unsaturated polyester composite and the evaluation of its optical and mechanical properties under extreme conditions of temperature. The polyester resin was reinforced with E-glass fibers to manufacture a composite using the hand layup method. Transparency was achieved by modifying the refractive index of the polyester resin to match that of the glass fibers. This investigation also presents the evaluation of glass fiber reinforced unsaturated polyester under quasi-static tension loading and puncture testing using a drop weight at extreme conditions. The results showed that the reinforced composite had a higher fracture stress and chord modulus at all temperatures ranging from +60 [degree]C to -80 [degree]C as compared to the unreinforced polyester matrix. The unreinforced polyester has a higher stiffness at lower temperatures due to reduced polymer chain mobility and higher clamping pressure of the matrix on the glass fiber reinforcement. The damage created by the impact reduces with decreasing temperatures, while the energy absorb remains constant with temperature.



2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Kusmono ◽  
Zainal Arifin Mohd Ishak

Unsaturated polyester (UP)/glass fiber/clay composites were prepared by hand layup method. The effect of clay loading on the morphological and mechanical properties of UP/glass fiber composites was investigated in this study. X-ray diffraction (XRD) was used to characterize the structure of the composites. The mechanical properties of the composites were determined by tensile, flexural, unnotched Charpy impact and fracture toughness tests. XRD results indicated that the exfoliated structure was found in the composite containing 2 wt% of clay while the intercalated structure was obtained in the composite with 6 wt% of clay. The tensile strength, flexural strength, and flexural modulus of the composites were increased in the presence of clay. The optimum loading of clay in the UP/glass fiber composites was attained at 2 wt%, where the improvement in in tensile strength, flexural strength, and flexural modulus was approximately 13, 21, and 11%, respectively. On the other hand, the highest values in impact toughness and fracture toughness were observed in the composites with 4 wt% of clay.



Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Jiayuan He ◽  
Weizhen Chen ◽  
Boshan Zhang ◽  
Jiangjiang Yu ◽  
Hang Liu

Due to the sharp and corrosion-prone features of steel fibers, there is a demand for ultra-high-performance concrete (UHPC) reinforced with nonmetallic fibers. In this paper, glass fiber (GF) and the high-performance polypropylene (HPP) fiber were selected to prepare UHPC, and the effects of different fibers on the compressive, tensile and bending properties of UHPC were investigated, experimentally and numerically. Then, the damage evolution of UHPC was further studied numerically, adopting the concrete damaged plasticity (CDP) model. The difference between the simulation values and experimental values was within 5.0%, verifying the reliability of the numerical model. The results indicate that 2.0% fiber content in UHPC provides better mechanical properties. In addition, the glass fiber was more significant in strengthening the effect. Compared with HPP-UHPC, the compressive, tensile and flexural strength of GF-UHPC increased by about 20%, 30% and 40%, respectively. However, the flexural toughness indexes I5, I10 and I20 of HPP-UHPC were about 1.2, 2.0 and 3.8 times those of GF-UHPC, respectively, showing that the toughening effect of the HPP fiber is better.



1997 ◽  
Vol 12 (4) ◽  
pp. 1091-1101 ◽  
Author(s):  
Seunggu Kang ◽  
Hongy Lin ◽  
Delbert E. Day ◽  
James O. Stoffer

The dependence of the optical and mechanical properties of optically transparent polymethyl methacrylate (PMMA) composites on the annealing temperature of BK10 glass fibers was investigated. Annealing was used to modify the refractive index (R.I.) of the glass fiber so that it would more closely match that of PMMA. Annealing increased the refractive index of the fibers and narrowed the distribution of refractive index of the fibers, but lowered their mechanical strength so the mechanical properties of composites reinforced with annealed fibers were not as good as for composites containing as-pulled (chilled) glass fibers. The refractive index of as-pulled 17.1 μm diameter fibers (R.I. = 1.4907) increased to 1.4918 and 1.4948 after annealing at 350 °C to 500 °C for 1 h or 0.5 h, respectively. The refractive index of glass fibers annealed at 400 °C/1 h best matched that of PMMA at 589.3 nm and 25 °C, so the composite reinforced with those fibers had the highest optical transmission. Because annealed glass fibers had a more uniform refractive index than unannealed fibers, the composites made with annealed fibers had a higher optical transmission. The mechanical strength of annealed fiber/PMMA composites decreased as the fiber annealing temperature increased. A composite containing fibers annealed at 450 °C/1 h had a tensile strength 26% lower than that of a composite made with as-pulled fibers, but 73% higher than that for unreinforced PMMA. This decrease was avoided by treating annealed fibers with HF. Composites made with annealed and HF (10 vol. %)-treated (for 30 s) glass fibers had a tensile strength (∼200 MPa) equivalent to that of the composites made with as-pulled fibers. However, as the treatment time in HF increased, the tensile strength of the composites decreased because of a significant reduction in diameter of the glass fiber which reduced the volume percent fiber in the composite.



2021 ◽  
Author(s):  
Chao Chen ◽  
Qingong Zhu ◽  
Huanping Wang ◽  
Feifei Huang ◽  
Qinghua Yang ◽  
...  

Abstract As is well known, silicate glass has a stable glass-forming region and mature drawing processes into fibers. In this study, to obtain enhanced mechanical properties, glasses with a composition of SiO2-Al2O3-MgO-CaO-B2O3-Fe2O3 were synthesized using TiO2 and CeO2. When the amount of TiO2 and CeO2 is less than 2 wt%, the mechanical properties increase with increases in the TiO2 and CeO2. However, as the amount of TiO2 and CeO2 increases from 2 to 3.5 wt%, the mechanical properties decrease. Co-doping with 1 wt% TiO2 and 1 wt% CeO2 was found to be the optimum approach, with a density, bending strength, compression strength, and compression modulus of 2.626 g/cm3, 108.36 MPa, 240.18 MPa, and 115.03 GPa, respectively. The optical band gap and Raman spectroscopy proved that, as long as the content of oxygen bonds reaches the maximum level, a kind of best structural stability and mechanical properties will be achieved. Hence, this type of high-strength silicate glass can be used in optical fibers for military defense, wind power generation, and transportation.



Sign in / Sign up

Export Citation Format

Share Document