scholarly journals Hydrostratigraphic Framework and Physicochemical Status of Groundwater in the Gioia Tauro Coastal Plain (Calabria—Southern Italy)

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3279
Author(s):  
Giuseppe Cianflone ◽  
Giovanni Vespasiano ◽  
Rosanna De Rosa ◽  
Rocco Dominici ◽  
Carmine Apollaro ◽  
...  

In this study, we analysed the Gioia Tauro Plain (Tyrrhenian coast, southern Italy) in terms of hydrostratigraphy and the physicochemical status of groundwater. We investigated the hydrostratigraphic framework of the area identifying a deep aquifer (made by late Miocene succession), an aquitard (consisting of Pliocene clayey and silty deposits) and a shallow aquifer (including Late Pleistocene and Holocene marine and alluvial sediments) using subsoil data (boreholes and geophysics). Our reconstruction showed that the structural geology controls the spatial pattern of the aquitard top and the shallow aquifer thickness. Furthermore, we evaluated the hydraulic conductivity for the shallow aquifer using an empirical method, calibrated by slug tests, obtaining values ranging from 10−4 to 10−5 m/s with a maximum of 10−3 m/s located close to inland dune fields. The piezometric level of the shallow aquifer recorded a significant drop between the 1970s and 2021 (−35 m as the worst value). It is the effect of climate and soil use changes, the latter being the increased water demand for kiwi cultivation. Despite the overexploitation of the shallow aquifer, shallow groundwater is fresh (736 µS/cm as mean electrical conductivity) except for a narrow coastal area where the electrical conductivity is more than 1500 µS/cm, which can be due to the seawater intrusion. What was more complex was the physicochemical status of the deep aquifer characterised by high temperature (up to 25.8 °C) and electrical conductivity up to 10,520 µS/cm along the northern and southern plain boundaries marked by tectonic structures. This issue suggested the dominant role of the local fault system that is likely affecting the deep groundwater flow and its chemical evolution.

2018 ◽  
Vol 42 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Shahpara Sheikh Dola ◽  
Khairul Bahsar ◽  
Mazeda Islam ◽  
Md Mizanur Rahman Sarker

Attempt has been made to find the relationship between the basin groundwater flow and the current water chemistry of south-western part of Bangladesh considering their lithological distribution and aquifer condition. The correlation of water chemistry and basin groundwater flow is depicted in the conceptual model. The water-types of shallow groundwater are predominantly Mg-Na-HCO3 and Ca- Mg-Na-HCO3 type. In the deep aquifer of upper delta plain is predominately Na-Cl, Ca-HCO3 and Mg- HCO3 type. In the lower delta plain Na-Cl type of water mainly occurs in the shallow aquifer and occasionally Ca-HCO3, Ca-Mg-Na-HCO3 and Mg-HCO3 type may also occur in shallow aquifer of the eastern part of lower delta plain which could have originated from the recent recharge of rain water. Na- Cl type water is also found in the deep aquifer of lower delta plain. The origin of Na-Cl type water in the deep aquifer of lower delta part might be connate water or present day sea water intrusion. Fresh water occurring in the deep aquifer in the lower delta area is mostly of Mg-Ca-HCO3 and Na-HClO3 types. This type of water originate from intermediate or deep basin flow from the northern part of Bangladesh. The probable source of deep groundwater is Holocene marine transgression (Khan et al. 2000) occurred in 3000–7000 cal years BP and the deep groundwater of Upper Delta plain and Lower Delta plain is clearly influenced by deep basin flow coming from north part of BangladeshJournal of Bangladesh Academy of Sciences, Vol. 42, No. 1, 41-54, 2018


2021 ◽  
Author(s):  
Giuseppe Cianflone ◽  
Giovanni Vespasiano ◽  
Rosanna De Rosa ◽  
Carmine Apollaro ◽  
Rocco Dominici ◽  
...  

<p>The Gioia Tauro plain (GTP) is an industrialized and agricultural coastal area of about 500 km<sup>2</sup> in the Tyrrhenian side of Calabria. Its harbour is one of the most important container traffic hubs in the Mediterranean basin. The GTP groundwater resources are constantly at risk of depletion and quality degradation due to anthropic activities.</p><p>GTP is a half-graben bounded by two massifs. The boundaries are marked by three main fault systems: the Nicotera-Gioiosa fault zone, NW-SE striking and right lateral kinematics along the north boundary; the NNE-SSW Cittanova Fault, a high-angle normal and active fault along the eastern border; the Palmi-Locri fault zone with NW-SE trend and a mainly strike-slip kinematics along the south boundary. The GTP sedimentary infill is made by an upper Miocene siliciclastic and carbonate succession overlays by Pliocene marly-limestone rhytmites and Piacenzian-Calabrian sandstones and calcarenites with interbedded 20m thick volcaniclastic deposits. Upward, the sedimentary infill continues with alluvial (in eastern and middle sector) and coastal (in the western sector) deposits.</p><p>Six geochemical facies of groundwater were distinguished, with different salinities and temperatures (Italiano et al., 2010). The majority of samples is of cold shallow groundwater and shows Ca-HCO<sub>3</sub>, Ca(Mg-Na)-HCO<sub>3</sub>(Cl-SO<sub>4</sub>) and Na-HCO<sub>3</sub> composition and overall low salinities (TDS <1g / L). Only few samples, with Na-SO<sub>4</sub> and Na-Cl composition, show high salinity (TDS <3.5g / L) and temperature (above 20 ° C). These latter occur in the northern portion of the plain, near the intersection of the Palmi-Gioia Tauro and Nicotera-Gioiosa faults systems, and in the southern sector, near Palmi town.</p><p>It was created a geodatabase using data of hundreds of boreholes, geotechnical and geophysical investigations. Furthermore, it is carrying out a geological and geophysical survey along the plain boundaries using passive seismic technique to infer the deep of discontinuities among the main geological units described above. The acquired data allowed to identify: i) the shallow aquifer, made by Pleistocene-Holocene deposits characterized by complex lateral variations; ii) at the bottom, the aquitard, represented by Pliocene marls; iii) the deep aquifer, consisting of the upper Miocene succession. The highest thickness of shallow aquifer (more than 200 m) is observed in the middle GTP sector. The thickness variation is strictly related to the NE-SW high angle normal faults which cross the GTP. The ongoing geological, geochemical, and geophysical surveys will allow: i) to identify the geometry of the hydrogeological units; ii) to define the hydrogeological features of the groundwater systems useful for modelling purposes, and iii) to improve the knowledge of water rock interactions processes (e.g., relations between deep and shallow waters, anthropogenic effects, seawater intrusion) for management purposes.</p><p>Italiano, F. et al. 2010. Geochemistry of fluids discharged over the seismic area of the Southern Apennines (Calabria region, Southern Italy): Implications for fluid-fault relationships. Appl. Geochem. 25, 540–554.</p>


1986 ◽  
Vol 21 (3) ◽  
pp. 351-367 ◽  
Author(s):  
Michael Sklash ◽  
Sharon Mason ◽  
Suzanne Scott ◽  
Chris Pugsley

Abstract We used seepage meters and minipiezometers to survey a 100 m by 7 km band of streambed of the St. Clair River near Sarnia, Ontario, Canada, to determine the quantity, quality, and sources of groundwater seepage into the river. The average observed seepage rate, 1.4 x 10−8 m3/s/m2, suggests higher than expected hydraulic conductivities and/or hydraulic gradients in the streambed. We found detectable levels of some organic contaminants in streambed groundwater samples from 1.0 and 1.5 m depths, however , concentrations did not exceed drinking water guidelines. Our isotopic and electrical conductivity data indicate that: (l) the streambed groundwater is not just river water, (2) groundwater from the “freshwater aquifer” at the base of the overburden Is not a significant component of the streambed groundwater, (3) some of the streambed groundwater is partially derived from a shallow groundwater flow system, and (4) an unidentified source of water with low tritium, river water-like δ18O, and very high electrical conductivity, contributes to the streambed groundwater.


2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Doni Prakasa Eka Putra

Since 1980s, accelerated by urbanization, Yogyakarta City was shifting to many directions defined by main road networks and service centres. Urbanization has transformed rural dwellings to become urban settlements and generated urban agglomeration area. Until now, new business centres, education centres and tourism centres are growing hand in hand with new settlements (formal or informal) without proper provision of water supply and sanitation system. This condition increase the possibility of groundwater contamination from urban wastewater and a change of major chemistry of groundwater as shallow unconfined aquifer is lying under Yogyakarta City. To prove the evolution of groundwater chemistry, old data taken on 1980s were comparing with the recent groundwater chemistry data. The evaluation shows that nitrate content of groundwater in 1980s was a minor anion, but nowadays become a major anion, especially in the shallow groundwater in the centre of Yogyakarta City. This evidence shows that there is an evolution of groundwater chemistry in shallow groundwater below Yogyakarta City due to contamination from un-proper on-site sanitation system. Keywords: Urbanization, Yogyakarta city, rural dwellings, settlements, agglomeration, contamination, groundwater


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 125
Author(s):  
Giacomo Prosser ◽  
Giuseppe Palladino ◽  
Dario Avagliano ◽  
Francesco Coraggio ◽  
Eleonora Maria Bolla ◽  
...  

This paper shows the main results of a multidisciplinary study performed along the southeastern sector of the Agri Valley in Basilicata (Southern Italy), where Cenozoic units, crucial for constraining the progressive evolution of the Southern Apennine thrust and fold belt and, more in general, the geodynamic evolution of the Mediterranean area are widely exposed. In particular, we aimed at understanding the stratigraphic and tectonic setting of deep-sea, thrust-top Cenozoic units exposed immediately to north of Montemurro, between Costa Molina and Monte dell’Agresto. In the previous works different units, showing similar sedimentological characteristics but uncertain age attribution, have been reported in the study area. In our study, we focussed on the Albidona Formation, pertaining to the Liguride realm, which shows most significant uncertainties regarding the age and the stratigraphic setting. The study was based on a detailed field survey which led to a new geological map of the area. This was supported by new stratigraphic, biostratigraphic and structural analyses. Biostratigraphic analysis provided an age not older than the upper Ypresian and not younger than the early Priabonian. Recognition of marker stratigraphic horizons strongly helped in the understanding of the stratigraphy of the area. The study allowed a complete revision of the stratigraphy of the outcropping Cenozoic units, the recognition of until now unknown tectonic structures and the correlation between surface and subsurface geology.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1499
Author(s):  
Davide Fronzi ◽  
Francesco Mirabella ◽  
Carlo Cardellini ◽  
Stefano Caliro ◽  
Stefano Palpacelli ◽  
...  

The interaction between fluids and tectonic structures such as fault systems is a much-discussed issue. Many scientific works are aimed at understanding what the role of fault systems in the displacement of deep fluids is, by investigating the interaction between the upper mantle, the lower crustal portion and the upraising of gasses carried by liquids. Many other scientific works try to explore the interaction between the recharge processes, i.e., precipitation, and the fault zones, aiming to recognize the function of the abovementioned structures and their capability to direct groundwater flow towards preferential drainage areas. Understanding the role of faults in the recharge processes of punctual and linear springs, meant as gaining streams, is a key point in hydrogeology, as it is known that faults can act either as flow barriers or as preferential flow paths. In this work an investigation of a fault system located in the Nera River catchment (Italy), based on geo-structural investigations, tracer tests, geochemical and isotopic recharge modelling, allows to identify the role of the normal fault system before and after the 2016–2017 central Italy seismic sequence (Mmax = 6.5). The outcome was achieved by an integrated approach consisting of a structural geology field work, combined with GIS-based analysis, and of a hydrogeological investigation based on artificial tracer tests and geochemical and isotopic analyses.


2017 ◽  
Vol 18 (2) ◽  
pp. 399-407 ◽  
Author(s):  
Bassam Tawabini ◽  
Mohammed Makkawi

Abstract The proximity of shallow groundwater systems to sources of contamination usually exposes them to severe environmental threats. Hazardous pollutants that leak from gas stations, landfills, and industrial facilities may eventually reach the underneath shallow groundwater aquifers, posing risks to human health and the environment. Cleaning contaminated groundwater sources has always been a challenge to the local authorities. This is even more challenging when dealing with difficult pollutants such as methyl tertiary butyl ether (MTBE) due its high solubility in water, poor biodegradability, and poor adsorption onto solids. This study aims to assess the efficiency of a pilot groundwater remediation system to treat a shallow aquifer contaminated with MTBE. The in-house designed and fabricated pilot system combines the technology of circulation wells and UV-based advanced oxidation technology for the breakdown and removal of MTBE from water. An ultraviolet/hydrogen peroxide (UV/H2O2) process was used in this study to remove MTBE from water. The concentration of MTBE was reduced from approximately 1,400 μg/L to as low as 34 μg/L within 30 minutes, with a treatment efficiency of about 98%. The study also assesses the effects of the UV intensity and the treatment time needed to remove the target pollutant.


2021 ◽  
Author(s):  
Vincent F. Verwater ◽  
Eline Le Breton ◽  
Mark R. Handy ◽  
Vincenzo Picotti ◽  
Azam Jozi Najafabadi ◽  
...  

Abstract. Neogene indentation of the Adriatic plate into Europe led to major modifications of the Alpine orogenic structures and style of deformation in the Eastern Alps. Especially, the offset of the Periadriatic Fault by the Northern Giudicarie Fault marks the initiation of strike-slip faulting and lateral extrusion of the Eastern Alps. Questions remain on the exact role of this fault zone in changes of the Alpine orogen at depth. This necessitates quantitative analysis of the shortening, kinematics and depth of decoupling underneath the Northern Giudicarie Fault and associated fold-and thrust belt in the Southern Alps. Tectonic balancing of a network of seven cross sections through the Giudicarie Belt parallel to the local shortening direction reveals that it comprises two kinematic domains with different amounts and partly overlapping ages of shortening. These two domains are delimitated by the NW-SE oriented strike-slip Trento-Cles – Schio-Vicenza fault system, cross-cutting the Southern Alpine orogenic front in the south and merging with the Northern Giudicarie Fault in the north. The SW kinematic domain (Val Trompia sector) accommodated at least ~18 km of Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW kinematic domain experienced a minimum of ~12–22 km shortening, whereas the NE kinematic domain underwent at least ~25–35 km shortening. Together, these domains contributed to an estimated ~53–75 km of sinistral strike-slip motion along the Northern Giudicarie Fault, implying that (most of) the offset of the Periadriatic Fault is due to Late Oligocene to Neogene indentation of the Adriatic plate into the Eastern Alps. Moreover, the faults linking the Giudicarie Belt with the Northern Giudicarie Fault reach ~15–20 km depth, indicating a thick-skinned tectonic style of deformation. These fault detachments may also connect at depth with a lower crustal Adriatic wedge that protruded north of the Periadriatic Fault and was responsible for N-S shortening and eastward escape of deeply exhumed units in the Tauern Window. Finally, the east-west lateral variation of shortening indicates internal deformation and lateral variation in strength of the Adriatic indenter, related to Permian – Mesozoic tectonic structures and paleogeographic domains.


2005 ◽  
Vol 5 (1) ◽  
pp. 109-116 ◽  
Author(s):  
M. Spizzico ◽  
N. Lopez ◽  
D. Sciannamblo

Abstract. The area investigated is located in the province of Brindisi (Italy). It is a generally flat area separated from the nearby carbonatic plateau of the Murgia by quite indistinct and high fault scarps. As regards the geological features, carbonatic basement rocks and post-cretaceous terrains made up of calabrian calcarenites and middle-upper Pleistocenic marine terraced deposits can be distinguished. In the examined area there are two different hydrogeological environments. The first is represented by deep groundwater, the main groundwater resource in Apulia. The second hydrogeological environment, now of lesser importance than the deep aquifer in terms of size and use, is made up of some small shallow groundwater systems situated in post-calabrian sands and located in the eastern area. During some sampling cycles carried out in the studied area, water was withdrawn from both the deep aquifer and from the shallow groundwater. For every sample, the necessary parameters were determined for the physical and chemical characterisation of two different hydrogeological environments. Moreover, some chemical parameters indicating anthropogenic activities were determined. Analysis of the aerial distribution of the measured parameters has shown some main areas subject to different conditions of contamination risk, in accordance with the hydrogeological and geological features of the investigated area. In the south-eastern part of the investigated area, the important action performed by the surface aquifer for protecting the deep groundwater from contamination of anthropogenic origin is clear. On the other hand, in the shallow groundwater, areas of nitrate and nitrite contamination have been identified, which result from the extensive use of fertilizers.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-21
Author(s):  
Zhaoxu Mi ◽  
Fugang Wang ◽  
Zhijie Yang ◽  
Xufeng Li ◽  
Yujie Diao ◽  
...  

CO2 geological storage in deep saline aquifers is an effective way to reduce CO2 emissions. The injection of CO2 inevitably causes a significant pressure increase in reservoirs. When there exist faults which cut through a deep reservoir and shallow aquifer system, there is a risk of the shallow aquifer being impacted by the changes in reservoir hydrodynamic fields. In this paper, a radial model and a 3D model are established by TOUGH2-ECO2N for the reservoir system in the CO2 geological storage demonstration site in the Junggar Basin to analyze the impact of the CO2 injection on the deep reservoir pressure field and the possible influence on the surrounding shallow groundwater sources. According to the results, the influence of CO2 injection on the reservoir pressure field in different periods and different numbers of well is analyzed. The result shows that the number of injection wells has a significant impact on the reservoir pressure field changes. The greater the number of injection wells is, the greater the pressure field changes. However, after the cessation of CO2 injection, the number of injection wells has little impact on the reservoir pressure recovery time. Under the geological conditions of the site and the constant injection pressure, although the CO2 injection has a significant influence on the pressure field in the deep reservoir, the impact on the shallow groundwater source area is minimal and can be neglected and the existing shallow groundwater sources are safe in the given project scenarios.


Sign in / Sign up

Export Citation Format

Share Document