scholarly journals Ethnobotany, Phytochemistry, and Pharmacological Efficacy of Bixaorellana: A Review

2021 ◽  
Vol 9 (2) ◽  
pp. 162-169
Author(s):  
T Purushothaman ◽  
K Irfanamol

Bixa Orellana, commonly known as lipstick tree, is a small perennial tree with reddish triangular fruits. It is commonly utilised as a natural dye, which found a wide range of applications in both foods and textile industries. It is also used in traditional medicinal practices to treating various health ailments. This review aims to summarise the ethnobotanical, phytochemistry as well as the pharmacological potential of Bixa Orellana. It has been used for fever, skin problems, intestinal problems, and hepatoprotection by the various tribal communities worldwide. It is also employed as an antidote to bites and as an insect repellant. The phytochemical review demonstrated numerous bioactive compounds such as alkaloids, tannins, terpenoids, saponins, flavonoids, etc. The pharmacological investigations evidenced that the plant has excellent antimicrobial, antipyretic, antidiabetic, anticonvulsant, antioxidant, and anticancer properties. In addition, Bixa Orellana can be used as a photosensitiser in antimicrobial photodynamic inactivation therapy to eliminate micro-organisms. So, the pieces of evidence highlighted in this review will be helpful insights for further scientific studies for the discovery and development of novel therapeutic agents.

2020 ◽  
Vol 1 (1) ◽  
pp. 30-36
Author(s):  
Shubha Jayachamarajapura Pranesh ◽  
Diwya Lanka

Background: Textile industries discharge harmful synthetic dyes to nearby water sources. These colour effluents should be treated before discharge to reduce the toxicity caused by synthetic colours. Objective: To synthesize visible light active superstructures to reduce water pollution caused by textile industries. Methods: We have successfully synthesized ZnO/Dy/NiO hybrid nanocomposites using waste curd as fuel by a simple combustion method. The obtained material was able to reduce recombination and enhanced the photocatalytic degradation of organic pollutants. The as-synthesized material was characterized by XRD, absorption spectroscopy, FESEM, EDAX, etc. The obtained hybrid nanostructure was used as a photocatalyst for the degradation of methylene blue under sunlight, UV light as well as in dark. Comparative experiments were carried out with a variation of catalytic load, pH, dye concentrations, etc. for a better understanding of the performance of the catalyst at various conditions. Results and Conclusion: The ternary compound shows wide range of absorption by expanding absorption band both in UV and visible regions. ZnO/Dy/NiO hybrid nanocomposites performed well and showed uniqueness in the activity uder visible light.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2914
Author(s):  
Kevin J. H. Lim ◽  
Yan Ping Lim ◽  
Yossa D. Hartono ◽  
Maybelle K. Go ◽  
Hao Fan ◽  
...  

Natural products make up a large proportion of medicine available today. Cannabinoids from the plant Cannabis sativa is one unique class of meroterpenoids that have shown a wide range of bioactivities and recently seen significant developments in their status as therapeutic agents for various indications. Their complex chemical structures make it difficult to chemically synthesize them in efficient yields. Synthetic biology has presented a solution to this through metabolic engineering in heterologous hosts. Through genetic manipulation, rare phytocannabinoids that are produced in low yields in the plant can now be synthesized in larger quantities for therapeutic and commercial use. Additionally, an exciting avenue of exploring new chemical spaces is made available as novel derivatized compounds can be produced and investigated for their bioactivities. In this review, we summarized the biosynthetic pathways of phytocannabinoids and synthetic biology efforts in producing them in heterologous hosts. Detailed mechanistic insights are discussed in each part of the pathway in order to explore strategies for creating novel cannabinoids. Lastly, we discussed studies conducted on biological targets such as CB1, CB2 and orphan receptors along with their affinities to these cannabinoid ligands with a view to inform upstream diversification efforts.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1781
Author(s):  
Gustavo A. Arias-Pinilla ◽  
Helmout Modjtahedi

Pancreatic cancer remains as one of the most aggressive cancer types. In the absence of reliable biomarkers for its early detection and more effective therapeutic interventions, pancreatic cancer is projected to become the second leading cause of cancer death in the Western world in the next decade. Therefore, it is essential to discover novel therapeutic targets and to develop more effective and pancreatic cancer-specific therapeutic agents. To date, 45 monoclonal antibodies (mAbs) have been approved for the treatment of patients with a wide range of cancers; however, none has yet been approved for pancreatic cancer. In this comprehensive review, we discuss the FDA approved anticancer mAb-based drugs, the results of preclinical studies and clinical trials with mAbs in pancreatic cancer and the factors contributing to the poor response to antibody therapy (e.g. tumour heterogeneity, desmoplastic stroma). MAb technology is an excellent tool for studying the complex biology of pancreatic cancer, to discover novel therapeutic targets and to develop various forms of antibody-based therapeutic agents and companion diagnostic tests for the selection of patients who are more likely to benefit from such therapy. These should result in the approval and routine use of antibody-based agents for the treatment of pancreatic cancer patients in the future.


2021 ◽  
Vol 10 (2) ◽  
pp. 181
Author(s):  
Vahid Alimardani ◽  
Samira Sadat Abolmaali ◽  
Gholamhossein Yousefi ◽  
Zahra Rahiminezhad ◽  
Mehdi Abedi ◽  
...  

Organic and inorganic nanoparticles (NPs) have shown promising outcomes in transdermal drug delivery. NPs can not only enhance the skin penetration of small/biomacromolecule therapeutic agents but can also impart control over drug release or target impaired tissue. Thanks to their unique optical, photothermal, and superparamagnetic features, NPs have been also utilized for the treatment of skin disorders, imaging, and biosensing applications. Despite the widespread transdermal applications of NPs, their delivery across the stratum corneum, which is the main skin barrier, has remained challenging. Microneedle array (MN) technology has recently revealed promising outcomes in the delivery of various formulations, especially NPs to deliver both hydrophilic and hydrophobic therapeutic agents. The present work reviews the advancements in the application of MNs and NPs for an effective transdermal delivery of a wide range of therapeutics in cancer chemotherapy and immunotherapy, photothermal and photodynamic therapy, peptide/protein vaccination, and the gene therapy of various diseases. In addition, this paper provides an overall insight on MNs’ challenges and summarizes the recent achievements in clinical trials with future outlooks on the transdermal delivery of a wide range of nanomedicines.


1998 ◽  
Vol 519 ◽  
Author(s):  
L. Bergogne ◽  
S. Fennouh ◽  
J. Livage ◽  
C. Roux

AbstractBioencapsulation in sol-gel materials has been widely studied during the past decade. Trapped species appear to retain their bioactivity in the porous silica matrix. Small analytes can diffuse through the pores allowing bioreactions to be performed in-situ, inside the sol-gel glass. A wide range of biomolecules and micro-organisms have been encapsulated. The catalytic activity of enzymes is used for the realization of biosensors or bioreactors. Antibody-antigen recognition has been shown to be feasible within sol-gel matrices. Trapped antibodies bind specifically the corresponding haptens and can be used for the detection of traces of chemicals. Even whole cells are now encapsulated without any alteration of their cellular organization. They can be used for the production of chemicals or as antigens for immunoassays.


2011 ◽  
Vol 688 ◽  
pp. 66-87 ◽  
Author(s):  
Efrath Barta

AbstractThe flow regime in the vicinity of oscillatory slender bodies, either an isolated one or a row of many bodies, immersed in viscous fluid (i.e. under creeping flow conditions) is studied. Applying the slender-body theory by distributing proper singularities on the bodies’ major axes yields reasonably accurate and easily computed solutions. The effect of the oscillations is revealed by comparisons with known Stokes flow solutions and is found to be most significant for motion along the normal direction. Streamline patterns associated with motion of a single body are characterized by formation and evolution of eddies. The motion of adjacent bodies results, with a reduction or an increase of the drag force exerted by each body depending on the direction of motion and the specific geometrical set-up. This dependence is demonstrated by parametric results for frequency of oscillations, number of bodies, their slenderness ratio and the spacing between them. Our method, being valid for a wide range of parameter values and for densely packed arrays of rods, enables simulation of realistic flapping of bristled wings of some tiny insects and of locomotion of flagella and ciliated micro-organisms, and might serve as an efficient tool in the design of minuscule vehicles. Its potency is demonstrated by a solution for the flapping of thrips.


2021 ◽  
Vol 21 (10) ◽  
pp. 5337-5343
Author(s):  
Nilam Qureshi ◽  
Seungjae Lee ◽  
Ravindra Chaudhari ◽  
Pramod Mane ◽  
Jayant Pawar ◽  
...  

In our current endeavor, 3-dimensional (3D) tungsten oxide (WO3) nanostructures (nanocubes, nanobars and nanobricks) have been swiftly generated via hydrothermal route at 160 °C for 24 h. Physico-chemical characterization of the resultant powder revealed formation of WO3 nanostructures with predominantly faceted cube, brick and rectangular bar-like morphology. The present study was also aimed at exploring the antimicrobial and anticancer potential of WO3 nanostructures. Antimicrobial activity was tested against different micro-organisms viz., Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli and Aspergillus fumigatus. The antibacterial and antifungal activity was ascertained against these micro-organisms by measuring the diameter of inhibition zone in agar well diffusion test which revealed that the resultant WO3 nanostructures acted as excellent antibacterial agents against both bacteria and fungi but were more effective against the fungus, A. fumigatus. To examine the growth curves of bacterial cells, time kill assay was monitored for E. coli, against which significant antibacterial action of WO3 nanostructures was noted. The anti-cancer activity of WO3 nanostructures was found to be concentration-dependent against KB cell line by viable cell count method. In our pilot study, WO3 nanostructures suspension with concentration in the range of 10−1 to 10−5 mg/ml was found to kill KB cells effectively.


Author(s):  
Shuaibu Babaji Sanusi ◽  
Mohd Fadzelly Abu Bakar ◽  
Maryati Mohamed ◽  
Siti Fatimah Sabran ◽  
Muhammad Murtala Mainasara

The genus Nepenthes (Nepenthaceae) has been utilized in folk medicine for a long time in India and Southeast Asia countries. They are used in the treatment of leprosy, cholera, night blindness, gastrointestinal discomfort, dysentery, stomachache, and bed-wetting among others. This review highlights the ethnobotanical uses, phytochemicals, and pharmacological activities of both crude extracts and pure bioactive compounds of Nepenthes spp. The phytochemical compounds isolated from Nepenthes species include flavonoids, terpenoids, tannins, alkaloids, and steroids among other phytochemicals. A wide range of pharmacological activities was exhibited by the crude extracts and pure bioactive components such as antibacterial, antifungal, antimalarial antioxidant, antidiabetic, antiosteoporotic, anti-inflammatory, cytotoxicity, and hypolipidemic activities. This review revealed that many active compounds are present in Nepenthes spp. However, many pharmacological screenings such as anticancer, antiviral, wound healing, antihelminthic, antidiarrheal properties, among others have not been carried out yet. Therefore, more biological investigations and phytochemical screenings are required to fully explore the genus Nepenthes which may lead to development of new therapeutic agents.  


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 685 ◽  
Author(s):  
Cormac McCarthy ◽  
Nadishka Jayawardena ◽  
Laura N. Burga ◽  
Mihnea Bostina

Oncolytic viruses (OVs) form a group of novel anticancer therapeutic agents which selectively infect and lyse cancer cells. Members of several viral families, including Picornaviridae, have been shown to have anticancer activity. Picornaviruses are small icosahedral non-enveloped, positive-sense, single-stranded RNA viruses infecting a wide range of hosts. They possess several advantages for development for cancer therapy: Their genomes do not integrate into host chromosomes, do not encode oncogenes, and are easily manipulated as cDNA. This review focuses on the picornaviruses investigated for anticancer potential and the mechanisms that underpin this specificity.


Author(s):  
Anjali, Sushma ◽  
Reena Sharma

Utricaceae is a family of herbs and shrubs that can be found in a variety of habitats around the world. A lot of research has been carried out till date targeted for close understanding of this medicinal plant. The botanical distribution, Ethnomedicinal applications, Traditional uses as well as Pharmacological properties of the Urtica genus, are discussed in this study. The composition such as flavonoids and array of phenolic compounds which includes alcohols, Diocanol, Diol glucosides, Terpenes diols, and sugars as well are an inclusion in the genus Urtica. A wide range of research reports have been published representing its biological and pharmacological potential against cancer, tumors, bacterial, viral or fungal infections significantly. The information about the Urtica genus has been extracted using electronic database search such as Google Scholar and Pubmed as well as a library search for peer-reviewed journal publications.


Sign in / Sign up

Export Citation Format

Share Document