scholarly journals Non-combustible, optically transparent polycarbonate compositions

2020 ◽  
pp. 28-30
Author(s):  
I. U. Zolkina ◽  
S. A. Radzinsky ◽  
T. I. Andreeva ◽  
D. Kh. Safin ◽  
A. V. Presnyakov ◽  
...  

A brief review of the results of research on reducing the flammability of modified materials based on polycarbonate, the effect of flame retardants and additives that reduce dropping, as well as affecting the complex of properties of polycarbonate is presented. The optimal concentrations of modifying additives for obtaining fire-resistant compositions with high optical characteristics have been determined. It is shown that to achieve the maximum flammability category (PV-0 at a thickness of 2 mm) and oxygen index (42.3%) for thin-walled products, it is necessary to use a high- viscosity grade of polycarbonate (MFI 2.5±1.0 g/10 min), alkali metal sulfonates as a fire retardant and an anti-dripping additive.

1995 ◽  
Vol 13 (1) ◽  
pp. 43-58 ◽  
Author(s):  
S.V. Levchik ◽  
G.F. Levchik ◽  
G. Camino ◽  
L. Costa

Talc added to PA-6 fire retardant with APP increases the oxygen index and upgrades the UL94 ranking to class V0. A chemical reaction of APP with talc, detected in the mixtures above 350°C, prevents volatilization of poly phosphoric acid and increases the amount of thermally stable solid residue. The inorganic phosphates that are formed improve the insulating properties of the intumescent layer on the surface of burning PA-6, as compared to the use of APP alone.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 435
Author(s):  
Feiyu Tian ◽  
Deliang Xu ◽  
Xinwu Xu

This study explored the feasibility of fabricating fire-retardant strandboard with low mechanical properties deterioration to the physico-mechanical properties. A hybrid fire-retardant system of ammonium polyphosphate (APP) and 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TBC) was investigated. Thermogravimetric analysis results show that both APP and TBC enhance the thermal stability and incombustibility of wood strands. An infrared spectrum was applied to investigate the effect of flame retardants on the curing behaviors of polymeric diphenylmethane diisocyanate (PMDI) resin. Based on the results of limiting oxygen index (LOI) and Cone calorimetry (CONE), APP and TBC both lead to a higher fire retardancy to strandboard. It is worth mentioning that the two flame retardants lead to evidently differential influences on the modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), and water-soaking thickness swelling (TS) properties of strandboard. Hence, a hybrid flame retardant is prominent in manufacturing strandboard with both good fire retardant and satisfying physico-mechanical properties.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3979
Author(s):  
Anna Strąkowska ◽  
Sylwia Członka ◽  
Karolina Miedzińska ◽  
Krzysztof Strzelec

The subject of the research was the production of silsesquioxane modified rigid polyurethane (PUR) foams (POSS-Cl) with chlorine functional groups (chlorobenzyl, chloropropyl, chlorobenzylethyl) characterized by reduced flammability. The foams were prepared in a one-step additive polymerization reaction of isocyanates with polyols, and the POSS modifier was added to the reaction system in an amount of 2 wt.% polyol. The influence of POSS was analyzed by performing a series of tests, such as determination of the kinetics of foam growth, determination of apparent density, and structure analysis. Compressive strength, three-point bending strength, hardness, and shape stability at reduced and elevated temperatures were tested, and the hydrophobicity of the surface was determined. The most important measurement was the determination of the thermal stability (TGA) and the flammability of the modified systems using a cone calorimeter. The obtained results, after comparing with the results for unmodified foam, showed a large influence of POSS modifiers on the functional properties, especially thermal and fire-retardant, of the obtained PUR-POSS-Cl systems.


1983 ◽  
Vol 1 (2) ◽  
pp. 145-154 ◽  
Author(s):  
John V. Beninate ◽  
Brenda J. Trask ◽  
Timothy A. Calamari ◽  
George L. Drake

Durable phosphorus-based flame retardants were applied to twill fabrics con taining cotton and wool to study the effect of wool on the flame retardancy and physical properties of the blend fabrics. The presence of wool in untreated blend fabrics caused burning rates to decrease and oxygen index values to increase as wool content increased in the blends. These effects were also observed in cotton/ wool blends treated with low levels of the Thps-urea-TMM flame retardant, but were less pronounced in fabrics treated at high levels. Thermogravimetric analyses were conducted to study the thermal degradation of the treated and untreated fabrics. The presence of wool in treated blend fabrics did not sig nificantly change strength retention, area shrinkage and wrinkle recovery values in comparison to similarly treated 100% cotton fabrics.


1993 ◽  
Vol 11 (5) ◽  
pp. 442-456 ◽  
Author(s):  
Jun Zhang ◽  
Michael E. Hall ◽  
A. Richard Horrocks

This paper is the first in a series of four which investigates the burning behaviour and the influence of flame retardant species on the flam mability of fibre-forming polymer and copolymers of acrylonitrile. A pressed powdered polymer sheet technique is described that enables a range of polymer compositions in the presence and absence of flame retardants to be assessed for limiting oxygen index, burning rate and char residue deter minations. The method offers a rapid, reproducible and convenient means of screening possible flame retardant systems, and LOI values compare favourably with those of films and fabrics comprising the same polymeric type. Burning rates, however, are sensitive to changes in physical sample character such as form (film vs. powder sheet) and density. Thus the technique forms an excellent basis for the generation of burning data which will enable comprehensive studies of acrylic polymer flammability and flame retardancy to be undertaken.


Author(s):  
Lyubov Vakhitova ◽  
◽  
Nadiya Taran ◽  
Konstantin Kalafat ◽  
◽  
...  

Purpose. Identification of the main directions of evolution of scientific researches concerning development and improvement of fire protective reactive coatings of intumescent type for steel constructions. Methods. Analysis of literature sources, study and generalization of information, classification and modeling of chemical processes. Results. As a result of the performed researches it has been shown that of all the developed reactive fire protection systems for increasing the fire resistance of steel structures the intumescent composition of ammonium polyphosphate/ pentaerythritol / melamine / polymer is the most widespread and economically justified. To reduce the cost of fire protection measures, it is necessary to improve the coatings of the intumescent type in the following main areas: increasing of fire protection efficiency with a decrease in the thickness of the fire protection layer; prolongation of life time with strengthening of resistance to external factors; reducing the cost of the prescription composition of intumescent paint due to the use of nanomaterials. Scientific novelty. It has been established that nanoclays, nanooxides of metals and silicon, LDH compounds and their analogues should be considered the most promising and multifunctional. The presence of nanomaterials in intumescent compositions allows to increase the environmental parameters of fire-retardant treatment due to the rejection of halogen flame retardants, boron compounds, formaldehyde resins. In addition, the presence of nanocompounds in intumescent coatings significantly reduces smoke in fire. Practical significance. The conclusions obtained from the literature review are of practical importance for the development of new approaches to the design of fire-fighting materials with improved performance through the use of nanomaterials, which provides a strong fire retardant foam char layer and provides rigidity of the insulation frame.


2021 ◽  
Vol 30 (2) ◽  
pp. 23-34
Author(s):  
O. N. Korolchenko ◽  
S. G. Tsarichenko ◽  
N. I. Konstantinova

Introduction. At present, the house-building industry, that produces timber structures, is in the process of sufficiently intensive development; however, high flammability of wood is the factor that restrains widespread use of timber in construction. The purpose of this work is to optimize the conditions of application of fire-retardant timber in the construction industry. The co-authors believe that the following problems are to be solved to attain this objective:● a comparative analysis of the fireproofing efficiency of several fire-proofing agents applied to different species of wood;● determination of the character of influence produced by fire proofing agents on fire retardant properties of wood.Methods of research. The fire proofing efficiency of sample compositions designated for wood was measured in compliance with the benchmark testing method specified in GOST R 53292 (p. 6.2). Experiments were launched pursuant to the methodology and with the help of measurement instruments specified in GOST 30244–94 (Method 2) to study the extent of the pine-tree timber flammability suppression. Critical values of thermal loads that may trigger inflammation and flame propagation in timber structures, that can be described using values of the critical surface density of the heat flow, were determined pursuant to GOST 30402–96 and GOST R 51032–97. The toxicity of combustion products and the smoke generation ability of fire-retardant pine-tree samples was assessed using standard methods and measurement instruments pursuant to GOST 12.1.044–89 (paragraphs 4.18 and 4.20).Research results and discussion. Biological flame retardants, integrated biological flame retardants that also ensure moisture protection, intumescent coatings, lacquers and varnishes that are ready for use and labelled as having group I and II fire-retardant efficiency pursuant to GOST R 53292, were studied in the course of this research project. The co-authors have identified that the mass loss by all fire-retardant compositions is below 9 %, if applied to samples of larch and oak-tree timber, same as if it were applied to standard samples of pine-tree timber.The findings of the experiment conducted to assess the flammability, ignitibility, flame propagation, smoke generation ability and toxicity of combustion products have proven the maximal efficiency of the composition designated for full-cell pressure impregnation of timber that ensures the properties of the material labelled as G1, V1, RP1, T2, D2.Conclusions. Hence, the research results have enabled the co-authors to assess the discrepancy between average mass loss values demonstrated by the samples of different species of timber (alder, linden, pine-tree, larch, and oak-tree).The comprehensive study of flammability properties of timber, treated by compositions that vary in their chemical composition and mode of action of the fire proofing agent, enabled the co-authors to identify the impact produced by versatile fire-proofing agents on different flammability properties of pine-tree timber with regard taken of the fire-safe use of construction materials and constructions of buildings and structures.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 664 ◽  
Author(s):  
Maria Paola Luda ◽  
Marco Zanetti

Polymers are intrinsically flammable materials; hence, fire retardance (FR) is required in their most common applications (i.e., electronic and construction, to mention some). Recently, it has been reported that cyclodextrin (CD) and cyclodextrin derivatives are beginning to be introduced into Intumescent Fire Retardant (IFR) formulations in place of pentaerythritol, which is used in IFRs that are currently on the market. Since IFRs are of less environmental concern than their hazardous halogen containing counterparts, the use of natural origin compounds in IFRs provides a way to comply with green chemistry issues. BCD and BCD derivatives presence in IFR mixtures promotes a higher yield of blowing gases and char when polymeric materials undergo combustion. Both processes play important roles in intumescence. The key rule to obtain in insulating compact char is the good dispersion of the nanoparticles in the matrix, which can be achieved by functionalizing nanoparticles with BCD derivatives. Moreover, CD derivatives are attractive because of their nanosized structure and their ability to form inclusion complexes with many compounds used as FR components, reducing their release to the environment during their shelf life of FR items. Often, fire retardance performed by BCD and BCD derivatives accompanies other relevant properties, such as improved mechanical resistance, washability resistance, self healing ability, thermal conductivity, etc. The application of CD fire retardant additives in many polymers, such as poly(lactic acid), poly(propylene), poly(vinyl acetate), poly(methyl methacrylate), linear low density poly(ethylene), polyamides, and polyesters are comprehensively reviewed here.


RSC Advances ◽  
2020 ◽  
Vol 10 (20) ◽  
pp. 12078-12088
Author(s):  
Hui Wang ◽  
Xiaosheng Du ◽  
Shuang Wang ◽  
Zongliang Du ◽  
Haibo Wang ◽  
...  

A novel reactive intumescent fire retardant hexa-[4-[(2-hydroxy-ethylimino)-methyl]-phenoxyl]-cyclotriphosphazene (HEPCP), containing both cyclotriphosphazene and Schiff base structures, is successfully prepared.


2015 ◽  
Vol 30 (6) ◽  
pp. 816-826 ◽  
Author(s):  
Yiren Huang ◽  
Jianwei Yang ◽  
Zhengzhou Wang

Flame-retardant properties of ammonium polyphosphate (APP) and its two microcapsules, APP with a shell of melamine–formaldehyde (MF) resin (MFAPP) and APP with a shell of epoxy resin (EPAPP), were studied in styrene–butadiene–styrene (SBS). The results indicate that APP after the microencapsulation leads to an increase in limiting oxygen index in SBS compared with APP. When dipentaerythritol is incorporated into the SBS composites containing the APP microcapsules, a further improvement in flame retardancy of the composites is observed. The microencapsulation does not result in much improvement of mechanical properties. Moreover, the effect of a compatibilizer (SBS grafted with maleic anhydride) on flame-retardant and mechanical properties of SBS/APP composites was investigated.


Sign in / Sign up

Export Citation Format

Share Document