scholarly journals Comparison of physiological effects of osmotic stress on two wheat genotypes

Botanica ◽  
2021 ◽  
pp. 134-140
Author(s):  
Elisaveta Kirova ◽  
Irina Moskova ◽  
Tania Kartseva ◽  
Konstantina Kocheva

Revealing stress tolerance mechanisms in plants would contribute to the selection of crop varieties with a higher capacity for surviving in unfavourable environments. In this regard, it is essential to identify possible physiological features that might be beneficial for increasing plant resistance to stress. Two contrasting common wheat (Triticum aestivum L.) cultivars with different drought tolerance were subjected to 48 h treatment with 20% polyethylene glycol 8000, which provoked an extra degree of osmotic and oxidative stress as well as distinct physiological responses. Better water retention capacity in leaves and lesser extent of membrane injury found in cultivar ‘Guinness’ compared to cultivar ‘Niki’ correlated with increased osmotic adjustment by accumulating higher amounts of proline and higher antioxidant scavenging capacity in the former. Compared to soluble sugars and total free amino acids, proline contributed to a greater extent to preserving leaf water. It was speculated that such a combination of features would set a genotypic advantage for this cultivar, which could also determine better performance under drought conditions in the field.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Muhammad Abid ◽  
Shafaqat Ali ◽  
Lei Kang Qi ◽  
Rizwan Zahoor ◽  
Zhongwei Tian ◽  
...  

Abstract Defining the metabolic strategies used by wheat to tolerate and recover from drought events will be important for ensuring yield stability in the future, but studies addressing this critical research topic are limited. To this end, the current study quantified the physiological, biochemical, and agronomic responses of a drought tolerant and drought sensitive cultivar to periods of water deficit and recovery. Drought stress caused a reversible decline in leaf water relations, membrane stability, and photosynthetic activity, leading to increased reactive oxygen species (ROS) generation, lipid peroxidation and membrane injury. Plants exhibited osmotic adjustment through the accumulation of soluble sugars, proline, and free amino acids and increased enzymatic and non-enzymatic antioxidant activities. After re-watering, leaf water potential, membrane stability, photosynthetic processes, ROS generation, anti-oxidative activities, lipid peroxidation, and osmotic potential completely recovered for moderately stressed plants and did not fully recover in severely stressed plants. Higher photosynthetic rates during drought and rapid recovery after re-watering produced less-pronounced yield declines in the tolerant cultivar than the sensitive cultivar. These results suggested that the plant’s ability to maintain functions during drought and to rapidly recover after re-watering during vegetative periods are important for determining final productivity in wheat.


1973 ◽  
Vol 13 (62) ◽  
pp. 299 ◽  
Author(s):  
HJ Moss ◽  
CS Edwards ◽  
NA Goodchild

Ten small scale tests of soft wheat quality have been investigated for their ability to discriminate between cultivars, and to arrange a series of samples in order of acceptability according to soft wheat criteria. The tests were grain size, fibre, protein, and ash content, pearling resistance, wheatmeal granularity, wheatmeal fermentation time, milling yield (Brabender Quadrumat Mill), sedimentation value and alkaline water retention capacity of the flour. Grain fibre and pearling resistance ranked cultivars in the same order irrespective of location or season, but the ranking according to other tests depended on environmental features. No small scale test nor combination of small scale tests was satisfactory at all sites for predictive purposes. Within most single-cultivar groups grains became harder as they became larger, while the protein level simultaneously declined.


2019 ◽  
Vol 42 ◽  
pp. e43479
Author(s):  
Thaís Lima Marques ◽  
Renzo Garcia Von Pinho ◽  
Édila Vilela de Resende Von Pinho ◽  
Bruno da Costa Paniago ◽  
Natália Chagas Freitas ◽  
...  

The objective of this study was to evaluate gene expression related to water deficit tolerance in maize lines. For this, lines previously classified as tolerant (91-T and 32-T) and non-tolerant (24-NT and 57-NT) to water deficit were used. The seeds of the four lines were evaluated for emergence and emergence speed index, and the seedlings were evaluated for root and shoot length under two conditions of water availability (70 and 10% substrate water retention capacity). In transcript analysis, the expression of several genes associated with water deficit tolerance, ZmDBP3, ZmALDH9, ZmAN13, and ZmDREB2A, was evaluated by qRT-PCR for the 91-T and 57-NT lines. It can be concluded that soil water deficiency did not reduce root development. However, the shoot length was significantly lower under dry conditions. Through transcript analysis, the genes ZmDBP3 and ZmAN13 were identified as potential markers for the early selection of maize lines tolerant to water deficit.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1796 ◽  
Author(s):  
Ya-Ling Huang ◽  
I-Ting Hsieh

Different methods can be used to change the fiber compositions of food, and they consequently affect the physicochemical properties and physiological activities. The present study compared the effects of a blanching treatment on the physicochemical properties of water-insoluble fiber enriched fraction (WIFF) from three varieties of vegetable soybean pod hulls (tea vegetable soybean pod hull, TVSPH; black vegetable soybean pod hull, BVSPH; 305 vegetable soybean pod hulls, 305VSPH) and evaluated their effects on intestinal health in hamsters. Blanching may increase the soluble dietary fiber (SDF) content of WIFF in the 305VSPH variety by solubilizing cell wall components and releasing water-soluble sugars. Thus, the WIFF in the 305VSPH variety after blanching may be composed of cellulose and pectic substances. The WIFF of the blanched 305VSPH (B-305VSPH) variety exhibited the highest physicochemical properties, such as a water-retention capacity (11.7 g/g), oil-holding capacity (9.34 g/g), swelling property (10.8 mL/g), solubility (12.2%), and cation-exchange capacity (221 meq/kg), of the three varieties examined. The supplementation of B-305VSPH WIFF in the diet resulted in significantly (p < 0.05) lower cecal and fecal ammonia; activities of fecal β-d-glucosidase, β-d-glucuronidase, mucinase, and urease; as well as higher cecal total short-chain fatty acids relative to other diets. In addition, microbial analysis suggested that fecal bifidobacteria growth was enhanced by the consumption of B-305VSPH WIFF. Therefore, B-305VSPH WIFF may be applicable as a potential functional ingredient in the food industry for the improvement of intestinal health.


2019 ◽  
Vol 2 (2) ◽  
pp. 115-120
Author(s):  
Karissha Fritzi Della ◽  
Mutiara Pratiwi ◽  
Purwa Tri Cahyana ◽  
Maria DPT Gunawan-Puteri

Fried food is convenient for many people due to its pleasant texture and taste. On the other hand, it comes with the risk of high oil absorption which might lead to certain health problems. Resistant starch (RS) has been known to have a functionality of reducing oil absorption. Three different types of banana: Kepok (Musa paradisiaca formatypica), Raja Bulu (Musa paradisiaca L.) and Ambon (Musa paradisiaca L. var sapientum) were evaluated on its performance when utilized as source of resistant starch especially on their application in reducing oil absorption in fried food. Tempeh was used as the food model. Banana starch (RS2) was isolated through water alkaline extraction process, continued with modification process through three repeated cycles of autoclaving-cooling process to obtain the RS3. RS3 was added into the batter coating formulation at three substitution ratios (10%, 30% and 50%) and then used to coat tempeh before frying. Evaluation of resistant starch in batter and battered productwas conducted on the following parameters: fat content, water retention capacity (WRC), coating pick up and sensory analysis. The result of this study revealed that Raja Bulu showed the most effective result on reducing oil absorption in the food tested. In the three bananas used, the ratio of 50% performed best in coating pick up (highest), WRC (highest) and fat content(lowest) parameters, but not significantly different with the 30% ratio. In terms of sensory acceptance, using Raja Bulu as the selected banana type, 30% of substitution ratio was significantly more preferable by the panelists in crispness, oiliness, and overall acceptance attributes compared to control and other substitution ratios.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Delphine M. Pott ◽  
Sara Durán-Soria ◽  
Sonia Osorio ◽  
José G. Vallarino

AbstractPlant quality trait improvement has become a global necessity due to the world overpopulation. In particular, producing crop species with enhanced nutrients and health-promoting compounds is one of the main aims of current breeding programs. However, breeders traditionally focused on characteristics such as yield or pest resistance, while breeding for crop quality, which largely depends on the presence and accumulation of highly valuable metabolites in the plant edible parts, was left out due to the complexity of plant metabolome and the impossibility to properly phenotype it. Recent technical advances in high throughput metabolomic, transcriptomic and genomic platforms have provided efficient approaches to identify new genes and pathways responsible for the extremely diverse plant metabolome. In addition, they allow to establish correlation between genotype and metabolite composition, and to clarify the genetic architecture of complex biochemical pathways, such as the accumulation of secondary metabolites in plants, many of them being highly valuable for the human diet. In this review, we focus on how the combination of metabolomic, transcriptomic and genomic approaches is a useful tool for the selection of crop varieties with improved nutritional value and quality traits.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nicole Pretini ◽  
Leonardo S. Vanzetti ◽  
Ignacio I. Terrile ◽  
Guillermo Donaire ◽  
Fernanda G. González

Abstract Background In breeding programs, the selection of cultivars with the highest yield potential consisted in the selection of the yield per se, which resulted in cultivars with higher grains per spike (GN) and occasionally increased grain weight (GW) (main numerical components of the yield). In this study, quantitative trait loci (QTL) for GW, GN and spike fertility traits related to GN determination were mapped using two doubled haploid (DH) populations (Baguette Premium 11 × BioINTA 2002 and Baguette 19 × BioINTA 2002). Results In total 305 QTL were identified for 14 traits, out of which 12 QTL were identified in more than three environments and explained more than 10% of the phenotypic variation in at least one environment. Eight hotspot regions were detected on chromosomes 1A, 2B, 3A, 5A, 5B, 7A and 7B in which at least two major and stable QTL sheared confidence intervals. QTL on two of these regions (R5A.1 and R5A.2) have previously been described, but the other six regions are novel. Conclusions Based on the pleiotropic analysis within a robust physiological model we conclude that two hotspot genomic regions (R5A.1 and R5A.2) together with the QGW.perg-6B are of high relevance to be used in marker assisted selection in order to improve the spike yield potential. All the QTL identified for the spike related traits are the first step to search for their candidate genes, which will allow their better manipulation in the future.


2021 ◽  
Vol 11 (4) ◽  
pp. 1595
Author(s):  
Salvatore La China ◽  
Luciana De Vero ◽  
Kavitha Anguluri ◽  
Marcello Brugnoli ◽  
Dhouha Mamlouk ◽  
...  

Bacterial cellulose (BC) is receiving a great deal of attention due to its unique properties such as high purity, water retention capacity, high mechanical strength, and biocompatibility. However, the production of BC has been limited because of the associated high costs and low productivity. In light of this, the isolation of new BC producing bacteria and the selection of highly productive strains has become a prominent issue. Kombucha tea is a fermented beverage in which the bacteria fraction of the microbial community is composed mostly of strains belonging to the genus Komagataeibacter. In this study, Kombucha tea production trials were performed starting from a previous batch, and bacterial isolation was conducted along cultivation time. From the whole microbial pool, 46 isolates were tested for their ability to produce BC. The obtained BC yield ranged from 0.59 g/L, for the isolate K2G36, to 23 g/L for K2G30—which used as the reference strain. The genetic intraspecific diversity of the 46 isolates was investigated using two repetitive-sequence-based PCR typing methods: the enterobacterial repetitive intergenic consensus (ERIC) elements and the (GTG)5 sequences, respectively. The results obtained using the two different approaches revealed the suitability of the fingerprint techniques, showing a discrimination power, calculated as the D index, of 0.94 for (GTG)5 rep-PCR and 0.95 for ERIC rep-PCR. In order to improve the sensitivity of the applied method, a combined model for the two genotyping experiments was performed, allowing for the ability to discriminate among strains.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David J. Peterman ◽  
Kathleen A. Ritterbush ◽  
Charles N. Ciampaglio ◽  
Erynn H. Johnson ◽  
Shinya Inoue ◽  
...  

AbstractThe internal architecture of chambered ammonoid conchs profoundly increased in complexity through geologic time, but the adaptive value of these structures is disputed. Specifically, these cephalopods developed fractal-like folds along the edges of their internal divider walls (septa). Traditionally, functional explanations for septal complexity have largely focused on biomechanical stress resistance. However, the impact of these structures on buoyancy manipulation deserves fresh scrutiny. We propose increased septal complexity conveyed comparable shifts in fluid retention capacity within each chamber. We test this interpretation by measuring the liquid retained by septa, and within entire chambers, in several 3D-printed cephalopod shell archetypes, treated with (and without) biomimetic hydrophilic coatings. Results show that surface tension regulates water retention capacity in the chambers, which positively scales with septal complexity and membrane capillarity, and negatively scales with size. A greater capacity for liquid retention in ammonoids may have improved buoyancy regulation, or compensated for mass changes during life. Increased liquid retention in our experiments demonstrate an increase in areas of greater surface tension potential, supporting improved chamber refilling. These findings support interpretations that ammonoids with complex sutures may have had more active buoyancy regulation compared to other groups of ectocochleate cephalopods. Overall, the relationship between septal complexity and liquid retention capacity through surface tension presents a robust yet simple functional explanation for the mechanisms driving this global biotic pattern.


Sign in / Sign up

Export Citation Format

Share Document