scholarly journals Physiological analysis and gene expression analysis of ZmDBP3, ZmALDH9, ZmAN13, and ZmDREB2A in maize lines

2019 ◽  
Vol 42 ◽  
pp. e43479
Author(s):  
Thaís Lima Marques ◽  
Renzo Garcia Von Pinho ◽  
Édila Vilela de Resende Von Pinho ◽  
Bruno da Costa Paniago ◽  
Natália Chagas Freitas ◽  
...  

The objective of this study was to evaluate gene expression related to water deficit tolerance in maize lines. For this, lines previously classified as tolerant (91-T and 32-T) and non-tolerant (24-NT and 57-NT) to water deficit were used. The seeds of the four lines were evaluated for emergence and emergence speed index, and the seedlings were evaluated for root and shoot length under two conditions of water availability (70 and 10% substrate water retention capacity). In transcript analysis, the expression of several genes associated with water deficit tolerance, ZmDBP3, ZmALDH9, ZmAN13, and ZmDREB2A, was evaluated by qRT-PCR for the 91-T and 57-NT lines. It can be concluded that soil water deficiency did not reduce root development. However, the shoot length was significantly lower under dry conditions. Through transcript analysis, the genes ZmDBP3 and ZmAN13 were identified as potential markers for the early selection of maize lines tolerant to water deficit.

2023 ◽  
Vol 83 ◽  
Author(s):  
E. M. M. Bartieres ◽  
D. M. Dresch ◽  
L. C. Reis ◽  
Z. V. Pereira ◽  
R. M. Mussury ◽  
...  

Abstract The objective of this study was to evaluate the activity of antioxidant enzymes, the functioning of the photosystem II and quality of C. xanthocarpa seedlings cultivated under intermittent water deficit and shading levels and the influence of shading on recovery potential after suspension of the stress conditions. The seedlings were subjected to three levels of shading (0, 30, and 70%), six periods of evaluation (start: 0 days; 1st and 2nd photosynthesis zero: 1st and 2nd P0; 1st and 2nd recovery: 1stand 2nd REC; and END), and two forms of irrigation (control: periodically irrigated to maintain 70% substrate water retention capacity, and intermittent irrigation: suspension of irrigation). The plants subjected to intermittent irrigation conditions at 0% shading showed a reduction in water potential (Ψw) and potential quantum efficiency of photosystem II (Fv/Fm) and maximum efficiency of the photochemical process (Fv/F0) and an increase in basal quantum production of the non-photochemical processes (F0/Fm). Superoxide dismutase (SOD) activity was higher in the leaves than in the roots. The C. xanthocarpa is a species sensitive to water deficit but presents strategies to adapt to an environment under temporary water restriction, which are more temporary are most efficient under shading. The seedlings with water deficit at all levels of shading exhibited higher protective antioxidant activity and lower quality at 0% shading. The shading minimizes prevents permanent damage to the photosystem II and after the re-irrigation, the evaluated characteristics showed recovery with respect to the control group, except POD and SOD activities in the leaves.


2016 ◽  
Vol 43 (6) ◽  
pp. 492 ◽  
Author(s):  
Megha H. Sampangi-Ramaiah ◽  
Kundapura V. Ravishankar ◽  
Shivashankar K. Seetharamaiah ◽  
Tapas K. Roy ◽  
Laxman R. Hunashikatti ◽  
...  

In the present study we examined 13 banana (Musa spp.) genotypes belonging to different genomic groups with respect to total leaf cuticular wax concentration, chemical composition, carbon chain length and their relationship with leaf water retention capacity (LWRC). A positive correlation between epicuticular wax content and LWRC clearly indicated that the cuticular wax plays an important role in maintaining banana leaf water content. The classification of hexane soluble cuticular wax components into different classes based on functional group and their association with LWRC showed that alcohol and ester compounds have a positive correlation. Further, the compounds with >C28 carbon chain length had a positive correlation with LWRC, indicating the role of longer carbon chain length in maintaining the water status of banana leaves. Also, the gene expression analysis showed higher expression of the wax biosynthetic genes FATB and KCS11 in higher wax load genotypes whereas lower expression was seen in low wax banana genotypes. Here, we report for the first time the compositional variations of cuticular wax in different banana genotypes, followed by their association with leaf water retention capacity. The results were also supported by variation in gene expression analysis of cuticular wax biosynthetic genes – FATB and KCS11.


2021 ◽  
Vol 37 ◽  
pp. e37079
Author(s):  
Milena Christy Santos ◽  
Édila Vilela de Resende Von Pinho ◽  
Heloisa Oliveira dos Santos ◽  
Danielle Rezende Vilela ◽  
Izabel Costa Silva Neta ◽  
...  

Drought stress is a major limiting factor for the development of maize, and the identification of the expression of genes related to this stress in seeds and seedlings can be an important tool to accelerate the selection process. The expression of genes related to tolerance to water deficit in seeds and in different tissues of maize seedlings were evaluated. Four tolerant genotypes (91-T, 32-T, 91x75-T, 32x75-T) and four non-tolerant genotypes (37-NT, 57-NT, 37x57-NT and 31x37-NT) were seeded in a substrate with 10% (stress) and 70% (control) water retention capacity. The expression of 4 enzymes were evaluated: catalase (CAT), peroxidase (PO), esterase (EST), and heat-resistant protein (HRP), as well as the relative expression of 6 genes: ZmLEA3, ZmPP2C, ZmCPK11, ZmDREB2A/2.1s, ZmDBP3 and ZmAN13 were evaluated in seed, shoots and roots of seedlings submitted or not to stress. There was variation in the expression of CAT, PO, SOD, EST and HRP enzymes among the evaluated genotypes and also in the different tissues evaluated. Higher expression of the CAT and PO was observed in the shoots. There was a greater expression of the EST in the genotypes non-tolerant to water deficit. HRP was expressed only in seeds. In the aerial part of maize seedlings, classified as tolerant, higher expression of genes ZmLEA3 and ZmCPK11 was observed. There was a higher expression of the ZmAN13 and ZmDREB2A/2.1S genes in roots developed under stress conditions and a higher expression of the ZmPP2C gene in seeds of line 91-T, which is classified as tolerant to drought stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonio Santana Batista de Oliveira Filho ◽  
Renato de Mello Prado ◽  
Gelza Carliane Marques Teixeira ◽  
Marisa de Cássia Piccolo ◽  
Antonio Márcio Souza Rocha

AbstractClimate change has increased the occurrence of water deficit in regions where sugarcane and energy cane are cultivated, jeopardizing dry matter production of stems. It was hypothesized that the reasons behind this fact relate to C:N:P stoichiometric modifications in these species that impair the conversion rates of accumulated nutrients in the stems, which could be attenuated by supplying silicon (Si) to the crops. Thus, the aims of this study were to evaluate the effects of water deficit in sugarcane and energy cane ratoons in the presence and absence of Si, in the C:N:P stoichiometry of stems, in the use efficiency of these nutrients and in the accumulation of dry matter in stems. Two experiments were carried out, using sugarcane (Saccharum officinarum) and energy cane (S. spontaneum), cultivated in pots filled with a Typic Quartzipisamment. The treatments for both experiments were arranged in a factorial scheme 2 × 2, without (70% of the soil’s water retention capacity) and with (30% of the capacity) water deficit, without and with the application of Si via fertirrigation, associated with foliar pulverization, both at a concentration of 2.5 mmol L−1, arranged in randomized blocks. The reduction in dry matter production of stems in both species caused by water deficit was due to modifications of the C, N and P stoichiometric homeostasis, but the benefit of Si in these plants when increasing dry matter production was not a reflection of the change in homeostasis, thus it may be involved in other mechanisms that remain unknown and should be further studied.


2020 ◽  
Vol 19 ◽  
pp. 10
Author(s):  
DANIELLE REZENDE VILELA ◽  
NATHALIA REZENDE RIBEIRO ◽  
HELOISA OLIVEIRA DOS SANTOS ◽  
ÉDILA VILELA RESENDE VON PINHO ◽  
RENATO COELHO DE CASTRO VASCONCELLOS ◽  
...  

Seed size may affect the initial development of seedlings, especially under adverse conditions such as water deficit. The objective of this study was to characterize the influence of seed size on traits presented by maize seedlings under contrasting conditions of water availability. The experiment was conducted with a tolerant line (L91), a non-tolerant line (L57), and with the F2 resulting from the cross between those lines. The seeds were classified with the use of round-hole sieves and those retained on sieves of sizes 22, 20 and 18/64” were used. The seeds were sown in trays containing sand and, in order to simulate water deficit, the water retention capacity was adjusted to 10% (stress) and 70% (control). Four replications were used, with 25 seeds per treatment, which were stored in a growth chamber at 25 ºC for 7 days. Then the number of seminal roots, length of root and shoot, and their weights (fresh, dry and total) were evaluated. The seed size directly influences the development of maize seedlings, when subjected to water restriction, regardless of whether they are lines or F2. In this case, the larger-size sieves (22 and 20) were superior when compared with the size 18. In the early stages, the L57 was more tolerant to water restriction when compared with L91.


2020 ◽  
Vol 202 (11) ◽  
pp. 2-13
Author(s):  
Svetlana Denisova ◽  
Antonina Reut

Abstract. Purpose. Study of the effect of anti-stress adaptogens on the water regime of some varieties of chrysanthemum in the conditions of the Bashkir Pre-Urals. Methodology and methods. The analysis of indicators of water regime is based on the method of artificial wilting (V. N. Tarenkov, L. N. Ivanova) and the method of saturation of plant samples (V. P. Moiseev, N. P. Reshetskiy). Plants were processed once, and samples were taken in three terms. Calculations were carried out by standard methods using statistical packages of the Microsoft Excel 2003 and the Agros 2.13. Results. The dynamics of indicators of the water regime during the treatment with the preparations “Gumi-20” and “Oberig” is analyzed. An assessment of the total water content, water retention capacity, daily moisture loss and water deficit of ten varieties of chrysanthemum bred by the South-Ural Botanical Garden-Institute of UFRC RAS (SUBGI UFRC RAS) in the period under study is given. Studies have shown that varieties of chrysanthemum in the Bashkir Ural under the same soil-climatic and agrotechnical conditions had the following indicators: total water content ‒ 69.4–86.9 %, water-holding capacity ‒ 25.6–53.8 %, daily moisture loss ‒ 17.2–61.0 %, water deficit ‒ 10.9–13.2 %. The use of anti-stress adaptogens did not have a significant effect on the parameters of the water regime, or their effect was variety-specific. As a result of the correlation-regression analysis, inverse relationships were revealed between the indicators of water deficit and the total water content, as well as between the daily water loss and water retention capacity. Scientific novelty. For the first time, the water regime of varieties of chrysanthemum of the SUBGI UFRC RAS selection was studied, the dependences of the water regime indicators were revealed, and the assessment of the expediency of using anti-stress adaptogens for certain varieties in the conditions of the Bashkir Pre-Urals was given.


1973 ◽  
Vol 13 (62) ◽  
pp. 299 ◽  
Author(s):  
HJ Moss ◽  
CS Edwards ◽  
NA Goodchild

Ten small scale tests of soft wheat quality have been investigated for their ability to discriminate between cultivars, and to arrange a series of samples in order of acceptability according to soft wheat criteria. The tests were grain size, fibre, protein, and ash content, pearling resistance, wheatmeal granularity, wheatmeal fermentation time, milling yield (Brabender Quadrumat Mill), sedimentation value and alkaline water retention capacity of the flour. Grain fibre and pearling resistance ranked cultivars in the same order irrespective of location or season, but the ranking according to other tests depended on environmental features. No small scale test nor combination of small scale tests was satisfactory at all sites for predictive purposes. Within most single-cultivar groups grains became harder as they became larger, while the protein level simultaneously declined.


2017 ◽  
Vol 19 (2) ◽  
pp. 105-114 ◽  
Author(s):  
T Tasmina ◽  
AR Khan ◽  
A Karim ◽  
N Akter ◽  
R Islam

The experiment was carried out at the research field of the Department of Agronomy of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur during November 2014 to March 2015 to assess and evaluate the physiological derivations of wheat varieties under water deficit condition. The experiment was laid out in a split plot design comprising two water regimes (irrigated or control and water stress) in main plot and three wheat varieties (BARI Gom 25, BARI Gom 26 and Sourav) in sub-plot with four replications. Surface irrigation was applied into the irrigated plots in total growing season but it was applied in water stress plots up to 21 days after sowing after that irrigation was stopped in water stress plots. It was revealed that studied parameters were significantly influenced by water regimes, variety and their interaction. The xylem exudation rate, light interception, SPAD value, leaf water potential, relative water content, water retention capacity was higher in irrigated condition where canopy temperature, water uptake capacity, water saturation deficit higher in water stress condition.The wheat var. BARI Gom 26 showed the highest PAR, SPAD value, leaf water potential, relative water content, water retention capacity where BARI Gom 25 exhibit lowest under water deficit condition. On the other hand, BARI Gom 25 showd the highest canopy temperature, water uptake capacity and water saturation deficit in water deficit condition. Therefore, considering the physiological performance and other characters BARI Gom 26 could be considered preferably for water shortage condition followed by Sourav where BARI Gom 25 was susceptible one.Bangladesh Agron. J. 2016 19(2): 105-114


Botanica ◽  
2021 ◽  
pp. 134-140
Author(s):  
Elisaveta Kirova ◽  
Irina Moskova ◽  
Tania Kartseva ◽  
Konstantina Kocheva

Revealing stress tolerance mechanisms in plants would contribute to the selection of crop varieties with a higher capacity for surviving in unfavourable environments. In this regard, it is essential to identify possible physiological features that might be beneficial for increasing plant resistance to stress. Two contrasting common wheat (Triticum aestivum L.) cultivars with different drought tolerance were subjected to 48 h treatment with 20% polyethylene glycol 8000, which provoked an extra degree of osmotic and oxidative stress as well as distinct physiological responses. Better water retention capacity in leaves and lesser extent of membrane injury found in cultivar ‘Guinness’ compared to cultivar ‘Niki’ correlated with increased osmotic adjustment by accumulating higher amounts of proline and higher antioxidant scavenging capacity in the former. Compared to soluble sugars and total free amino acids, proline contributed to a greater extent to preserving leaf water. It was speculated that such a combination of features would set a genotypic advantage for this cultivar, which could also determine better performance under drought conditions in the field.


2017 ◽  
Vol 41 (6) ◽  
pp. 676-682 ◽  
Author(s):  
Danieli Pieretti Nunes ◽  
Silvana de Paula Quintão Scalon ◽  
Daiane Mugnol Dresch ◽  
Carla Regina Baptista Gordin

ABSTRACT Schinus terebinthifolius Raddi is a tree species that can be used in the recovery of degraded areas, as it exhibits rapid growth and has a very expansive root system, facilitating water uptake from the deeper layers of the soil. The objective of this study was to evaluate photosynthesis and enzymatic activity in S. terebinthifolius seedlings under conditions of water deficit and their potential to recover following re-irrigation. The experiment was conducted in a greenhouse under a plastic covering where plants were distributed into two groups: Group 1 - control plants, where irrigation was maintained at 70% of the water retention capacity, and Group 2 - stressed plants, where irrigation was suspended until the photosynthetic rate neared zero, followed by rehydration for 12 days, then a further suspension of irrigation. At the beginning of the experiment and during the suspension of irrigation and rehydration, plants were evaluated for gas and antioxidant enzyme exchanges. Hydric stress significantly reduced photosynthesis, stomatal transpiration conductance, carboxylation efficiency of Rubisco, and the chlorophyll content of the S. terebinthifolius plants. Following rehydration, plants recovered the carboxylation efficiency of Rubisco, but not the photosynthetic rate. Antioxidant enzyme activity increased in both the aerial part and the root in response to water deficit.


Sign in / Sign up

Export Citation Format

Share Document