scholarly journals The effect of process parameters on the electrospun polystyrene fibers

2018 ◽  
Vol 69 (04) ◽  
pp. 263-269
Author(s):  
BANCIU CRISTINA ◽  
BĂRA ADELA ◽  
CHIȚANU ELENA ◽  
MARINESCU VIRGIL ◽  
SBÂRCEA GABRIELA ◽  
...  

Electrospinning is one of the methods for obtaining nano/microfibers, using polymeric solutions. These nanofibrous membranes are highly porous with interconnected pores, having high specific surface area and small pore size, making them a suitable candidate for filtration applications. The properties of electrospun fibers are influenced by polymer solution, solvent, solution concentration, viscosity, electrical conductivity, electrical voltage, spinneret to collector distance etc. Expanded polystyrene is a polymeric product that is usually used for insulation and packaging. Recycling expanded polystyrene into nanofibers with applications in filtration could be useful from an economic point of view. The purpose of this study was to investigate the influence of expanded polystyrene polymer solution characteristics (concentration, viscosity) and the process parameters (applied voltage, distance between the tip and the collector plate, flow rate of the polymer solution) on the morphology and the properties of the obtained electrospun fibers. Therefore, three EPS solutions with 10, 15 and 20% wt. concentration were prepared and were electrospun under processing conditions with an applied voltage of 12, 15 and 18 kV, a spinneret-to-collector distance of 20 cm, a flow rate of solution of 1.5 and 2 mL/hour, a spinneret diameter of 0.8 mm and stationary copper substrate. The morphology of the electrospun fibers was observed by scanning electron microscopy. The mechanical properties were evaluated by tensile strength and elongation tests.

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 287 ◽  
Author(s):  
Jianzhou Chen ◽  
Ting Wu ◽  
Libing Zhang ◽  
Peng Li ◽  
Xiaowei Feng ◽  
...  

A micro pattern is a key component of various functional devices. In the present study, using the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) mixed material as the direct-writing solution and photographic paper as the flexible insulating substrate, the organic micro patterns of various shapes, such as the curve of the second-order self-similar structure, the helical curve, and the wave curve, were fabricated on the flexible insulating substrate by using the near-field electrohydrodynamic direct-writing method. The effects of process parameters, such as the applied voltage, direct-writing height, flow rate of the injection system, and moving velocity of the substrate, on the width and the conductivity of the organic micro patterns were studied in the near-field electrohydrodynamic direct-writing process. The results show that the width of an organic micro pattern increases with the increase of the applied voltage of the high-voltage power supplier and the flow rate of the injection system under the condition where the three other process parameters remained constant, respectively, while the width of an organic micro pattern decreases with the increase of the direct-writing height and the moving velocity of the flexible substrate, respectively. The fabricated organic microcircuit patterns of the natural drying in air at room temperature were tested by a thin film thermoelectric tester at a detection temperature. The results show that the conductivity of a fabricated organic micro pattern decreases with the increase of the electric field intensity, while the effect of moving velocity and the flow rate on the conductivity is small under the condition where the three other process parameters remained constant.


2016 ◽  
Vol 41 ◽  
pp. 18-30 ◽  
Author(s):  
Saman Firoozi ◽  
Amir Amani ◽  
Mohammad Ali Derakhshan ◽  
Hossein Ghanbari

In this study, electrospun nanofibers of polyurethane were prepared utilizing a new solvent system made of chloroform/methanol. Also, we planned to assess effects of four important parameters on diameter of electrospun polyurethane nanofibers using Artificial Neural Networks (ANNs). The parameters investigated included flow rate of syringe pump, distance of spinneret to collector, applied voltage and concentration of polymer solution. Diameter of obtained electrospun nanofibers was measured using scanning electron microscopy (SEM). Results showed that flow rate and distance had reverse relation with fiber diameter, while applied voltage and concentration of polymer solution directly affected the diameter. Also, polymer concentration was shown to be the dominant factor here.


2018 ◽  
Vol 33 (5) ◽  
pp. 619-629 ◽  
Author(s):  
Maryam Soleimani ◽  
Shohreh Mashayekhan ◽  
Hossein Baniasadi ◽  
Ahmad Ramazani ◽  
Mohamadhasan Ansarizadeh

Peripheral nervous system in contrary to central one has the potential for regeneration, but its regrowth requires proper environmental conditions and supporting growth factors. The aim of this study is to design and fabricate a conductive polyaniline/graphene nanoparticles incorporated gelatin nanofibrous scaffolds suitable for peripheral nervous system regeneration. The scaffolds were fabricated with electrospinning and the fabrication process was designed with Design-Expert software via response surface methodology. The effect of process parameters including applied voltage (kV), syringe pump flow rate (cm3/h), and PAG concentration (wt%), on the scaffold conductivity, nanofibers diameter, and cell viability were investigated. The obtained results showed that the scaffold conductivity and cell viability are affected by polyaniline/graphene concentration while nanofiber diameter is more affected by the applied voltage and syringe pump flow rate. Optimum scaffold with maximum conductivity (0.031 ± 0.0013 S/cm) and cell compatibility and suitable diameter were electrospun according to the software introduced values for the process parameters (voltage of 13 kV, flow rate of 0.1 cm3/h, and PAG wt.% of 1.3) and its morphology, cell compatibility, and biodegradability were further investigated, which showed its potential for applying in peripheral nervous system injury regeneration.


Author(s):  
Yuanyuan Duan ◽  
Lohitha Kalluri ◽  
Megha Satpathy ◽  
Yuanyuan Duan

Background: Poly lactic-co-glycolic acid (PLGA) has been widely investigated for various biomedical applications, such as craniofacial bone regeneration, wound dressing and tissue engineering. Electrospinning is a versatile technology used to produce micro/nanoscale fibers with large specific surface area and high porosity. Purpose: The aim of the current study is to prepare PLGA nanofibers using electrospinning for guided tissue regeneration/guided bone regeneration applications. The objective of this study is to determine the appropriate electrospinning parameters such as applied voltage, flow rate, spinneret-collector distance and polymer solution concentration for preparation of PLGA fibrous membrane and their effect on the mean fiber diameter of the electrospun fibers. Method: PLGA pellets were dissolved in Hexafluoroisopropanol (HFIP) in various concentrations overnight using a bench rocker. The resulting PLGA solution was then loaded into a syringe and electrospinning was done by maintaining the other parameters constant. Similarly, various fibrous mats were collected by altering the specific electrospinning parameter inputs such as applied voltage, flow rate and spinneret-collector distance. The morphology of the fibrous mats was characterized using Scanning Electron Microscope. The mean fiber diameter was assessed using ImageJ software and the results were compared using one-way ANOVA. Results: We obtained bead-free uniform fibers with various tested solution concentrations. One-way ANOVA analysis demonstrated significant variation in mean fiber diameter of the electrospun fibers with altering applied voltage, solution concentration, flow rate and spinneret-collector distance. Conclusion: The above-mentioned electrospinning parameters and solution concentration influence the mean fiber diameter of electrospun PLGA nanofibers.


2018 ◽  
Vol 55 (1B) ◽  
pp. 216 ◽  
Author(s):  
Viet Linh Nguyen - Vu

In this study, electrospray modes were investigated to clarify their effects on the morphology and size of polycaprolactone (PCL) particles. The result indicated that electrosprayed microspheres with homogeneous and stable morphology were fabricated by using cone–jet mode and suitable electrospray processing parameters. Besides, the PCL solution was created by dissolving in dichloromethane with different concentrations such as 3.5%, 4%, 4.5% and 5%. The scanning electron microscopy (SEM) micrographs pointed that electrosprayed PCL microspheres were formed by using 4.5 % polymer solution. In addition, the reproducible and homogeneous morphology of PCL microparticles were obtained at the following set of parameters: applied voltage of 18 kV, flow rate of 1.5 mL/h and distance tip to collector of 20 cm. Moreover, at the collecting distance of 15–25 cm, the flow rate of 1.2–1.8 mL/h and applied voltage of 18 kV the cone–jet mode was generated. It was an effective electrospray mode to create stable and homogeneous microspheres.


Author(s):  
Wenjing Guo ◽  
Hu Jiyong ◽  
Xiong Yan

Abstract As a similar technology to the near-field static electrospinning, the emerging electrohydrodynamic (EHD) printing technology with digital printing process and compatibility of viscous particle-blended inks is one of the simplest methods of fabricating multifunctional electronic textiles.With increasing demands for textile-based conductive lines with controllable width and excellent electrical performance, it’s of great importance to know the influence of key process parameters on the morphology and electrical properties of EHD-printed UV-curing conductive lines on the fabric. This work will systematically explore the effect of the EHD printing process parameters (i.e. applied voltage, direct-writing height, flow rate and moving velocity of the substrate) on the morphology and electrical performance of the EHD-printed textile-based conductive lines, especially focus on the diffusion and penetration of inks on the rough and porous fabric. The UV-curing nano-silver ink with low temperature and fast curing features was selected, and the line width and electrical resistance of printed lines under different process parameters were observed and measured. The results showed that, unlike previous results about EHD printing on smooth and impermeable substrates, the ink diffusion related to fabric textures had a greater effect on the fabric-based conductive line width than the applied voltage and direct-writing height in the case of a stable jet. Meanwhile, the relationship between the line width and the flow rate met the equation of = 407.28 ∗ 1⁄2 , and the minimum volume on fabric per millimeter was 0.67μL to form continuous line with low electrical resistance. Additionally, the higher substrate moving velocity resulted in a smaller line width, while it deteriorated the thickness uniformity and electrical property of printed lines. Generally, due to the effect of surface structure of the fabric on the spreading and penetrating behavior of inks, the flow rate and the substrate moving velocity are two significant parameters ensuring the electrical property of printed lines. It is believed that these findings will provide some guides for applying electrohydrodynamic printing technology into flexible electronics on the woven fabric.


2008 ◽  
Vol 1134 ◽  
Author(s):  
Chitrabala Subramanian ◽  
Samuel C. Ugbolue ◽  
Steven B. Warner ◽  
Prabir K. Patra

AbstractElectrospinning is a technique of producing nanofibers from polymer solution/melt solely under the influence of electrostatic forces. In this research, we investigated the formation of nanofibers by melt electrospinning polycaprolactone (PCL). The effect of process parameters such as molecular weight, applied voltage, and electrode separation on the fiber diameter was investigated. Controlling the process parameters could help increase the proportion of ultrafine fibers in the melt electrospun nonwoven mat. The velocity of the straight jets was in the range of 0.2-1 m/s. The melt electrospun fibers were characterized with respect to fiber diameter, distribution, mechanical properties and birefringence. Melt electrospun polycaprolactone fibers had a diameter distribution of the order of 5 -20 μm. The birefringence of the melt electrospun fibers increased with decrease in fiber diameter.


2012 ◽  
Vol 535-537 ◽  
pp. 2522-2525 ◽  
Author(s):  
Amit Jadhav ◽  
Li Jing Wang ◽  
Rajiv Padhye

In an electrospraying process, the polymer solution interacts with the electric field. Charged polymeric solutions causing polymer liquids to move, break into drops or spray into fine droplets. Electrospraying has the ability to generate very small & uniform droplets of polymeric solution. It is envisaged that electrospraying is a promising technology to coat a polymer on surface at submicron range. The polymer aggregation is important while coating. The process parameters including applied voltage, nozzle-collector distance, solution flow rate, and solution concentration play an important role in polymer droplets aggregation on surface. This research paper investigates the effect of applied voltage on aggregation of polymer droplets.


2017 ◽  
pp. 285-293
Author(s):  
Vesna Vasic ◽  
Aleksandar Jokic ◽  
Marina Sciban ◽  
Jelena Prodanovic ◽  
Jelena Dodic ◽  
...  

The present work studies the effect of operating parameters (pH, feed flow rate, and transmembrane pressure) on microfiltration of distillery stillage. Experiments were conducted in the presence of a Kenics static mixer as a turbulence promoter, and its influence on the flux improvement and specific energy consumption was examined. Response surface methodology was used to investigate the effect of selected factors on microfiltration performances. The results showed that response surface methodology is an appropriate model for mathematical presentation of the process. It was found that the use of a static mixer is justified at the feed flow rates higher than 100 L/h. In contrast, the use of a static mixer at low values of feed flow rate and transmembrane pressure has no justification from an economic point of view.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 325
Author(s):  
Muslim Mahardika ◽  
Martin Andre Setyawan ◽  
Tutik Sriani ◽  
Norihisa Miki ◽  
Gunawan Setia Prihandana

Titanium is widely used in biomedical components. As a promising advanced manufacturing process, electropolishing (EP) has advantages in polishing the machined surfaces of material that is hard and difficult to cut. This paper presents the fabrication of a titanium microchannel using the EP process. The Taguchi method was adopted to determine the optimal process parameters by which to obtain high surface quality using an L9 orthogonal array. The Pareto analysis of variance was utilized to analyze the three machining process parameters: applied voltage, concentration of ethanol in an electrolyte solution, and machining gap. In vitro experiments were conducted to investigate the fouling effect of blood on the microchannel. The result shows that an applied voltage of 20 V, an ethanol concentration of 20 vol.%, and a machining gap of 10 mm are the optimum machining parameters by which to enhance the surface quality of a titanium microchannel. Under the optimized machining parameters, the surface quality improved from 1.46 to 0.22 μm. Moreover, the adhesion of blood on the surface during the fouling experiment was significantly decreased, thus confirming the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document