scholarly journals Biotechnology for remediation and restoring the ecological status of soil in the places of permanent disposition of the troops by oil-destructor preparation on the basis of the microbial-plant association

2018 ◽  
Vol 2 (4) ◽  
pp. 44-56

The object of the study is a preparation of ecotoxicant destructor based on bacterial strains of Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas délhiensis and associations of nodule bacteria Rhizobium loti with Lotus corniculatus. It is established, that during the simultaneous use of the bacteria and the legume Lotus corniculatus the rate of oxidation of petroleum hydrocarbons increases three times in comparison with the degradation rate of the pollutant after the separate use of each bacterial strain. We have received the preparation of ecotoxicant destructor – dry heterogeneous mass consisting of viable microbial cells of strains of P. delhiensis and R. lotus, seeds of leguminous plant Lotus corniculatus and delignified sawdust. Oil destructive activity of the preparation is proved in the course of microfield experiments. The degradation of ecotoxicants is proved by capillary gas chromatography-mass spectrometry with mass-selective detection. Bacteria of the strains, included in the preparation, are non-pathogenic for humans and animals, biocompatible, environmentally safe, stable, unpretentious to nutritional needs, technological, do not persist in environmental objects in the absence of a substrate for destruction. The technology of the production of the preparation is developed. The results of these studies demonstrate the possibility of practical use of the degradative potential of the preparation in the course of the implementation of the measures for soil reclamation, cleaning up ecotoxicants and restoring its ecological status.

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 703
Author(s):  
Severino Zara ◽  
Giacomo L. Petretto ◽  
Alberto Mannu ◽  
Giacomo Zara ◽  
Marilena Budroni ◽  
...  

The production of saffron spice generates large quantities of plant by-products: over 90% of the plant material collected is discarded, and a consideration fraction of this waste is plant stamens. This work investigated the chemical composition and the antimicrobial activities of the non-polar fraction extracted from four different saffron flower stamens. The chemical composition of ethereal extracts of the saffron stamens was qualitatively assessed by means of gas–chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. These analyses revealed ethereal extracts to possess a high polyunsaturated fatty acid content. In vitro antibacterial activity of stamen extracts showed no large differences between Gram-positive and Gram-negative bacteria in terms of minimal inhibitory concentration (MIC). In food matrix microbial analysis of the bacterial strains belonging to the main foodborne pathogen species, including Staphylococcus aureus DSM 20231, Escherichia coli DSM 30083, and Listeria monocytogenes DSM 20600, using low-fat UHT milk, revealed a statistically significant reduction in the number of cells (particularly for E. coli and S. aureus with a complete elimination of the population of the two target bacteria following incubation in diethyl ether extracts of saffron stamen (DES) at high concentrations tested, both at 37 °C and 6 °C (for 48 h and 7 days, respectively). A synergic effect was observed when the pathogens were incubated at 6 °C with DES. This work shows these by-products to be excellent sources of bioactive compounds, which could be exploited in high-added-value products, such as food, cosmetics, and drugs.


2020 ◽  
Vol 15 (3) ◽  
pp. 1934578X2091503 ◽  
Author(s):  
Gordana S. Stojanović ◽  
Jovana D. Ickovski ◽  
Aleksandra S. Đorđević ◽  
Goran M. Petrović ◽  
Katarina D. Stepić ◽  
...  

Volatiles of diethyl ether extract (DE), ethyl acetate extract (EE), and hexane extract (HE) of Artemisia scoparia Waldst. et Kit. were analyzed by gas chromatography with flame ionization detector and gas chromatography-mass spectrometry. In both DE and EE, the main compound was scoparone (24.0% and 86.1%, respectively) while in the HE, alkanes were dominant with nonacosane as the most represented (19.4%). Antimicrobial activity was tested against 4 bacterial strains and 1 fungal strain using disc-diffusion method. Tested samples were inactive against Gram-negative bacteria and they exhibited activity against Gram-positive bacteria and yeast Candida albicans. This is the first report on the chemical composition of volatile components and antimicrobial activity of DE, EE, and HE of A. scoparia Waldst. et Kit.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 679
Author(s):  
Maha M. Ismail ◽  
Reham Samir ◽  
Fatema R. Saber ◽  
Shaimaa R. Ahmed ◽  
Mohamed A. Farag

Bacterial biofilm contributes to antibiotic resistance. Developing antibiofilm agents, more favored from natural origin, is a potential method for treatment of highly virulent multidrug resistant (MDR) bacterial strains; The potential of Pimenta dioica and Pimenta racemosa essential oils (E.Os) antibacterial and antibiofilm activities in relation to their chemical composition, in addition to their ability to treat Acinetobacter baumannii wound infection in mice model were investigated; P. dioica leaf E.O at 0.05 µg·mL−1 efficiently inhibited and eradicated biofilm formed by A. baumannii by 85% and 34%, respectively. Both P. diocia and P. racemosa leaf E.Os showed a bactericidal action against A. baumanii within 6h at 2.08 µg·mL−1. In addition, a significant reduction of A. baumannii microbial load in mice wound infection model was found. Furthermore, gas chromatography mass spectrometry analysis revealed qualitative and quantitative differences among P. racemosa and P. dioica leaf and berry E.Os. Monoterpene hydrocarbons, oxygenated monoterpenes, and phenolics were the major detected classes. β-Myrcene, limonene, 1,8-cineole, and eugenol were the most abundant volatiles. While, sesquiterpenes were found as minor components in Pimenta berries E.O; Our finding suggests the potential antimicrobial activity of Pimenta leaf E.O against MDR A. baumannii wound infections and their underlying mechanism and to be further tested clinically as treatment for MDR A. baumannii infections.


2017 ◽  
Vol 24 (21) ◽  
pp. 17436-17445 ◽  
Author(s):  
Marta Marcos-García ◽  
Paula García-Fraile ◽  
Alena Filipová ◽  
Esther Menéndez ◽  
Pedro F. Mateos ◽  
...  

2020 ◽  
Vol 19 (10) ◽  
pp. 2115-2121
Author(s):  
Ali Uyan ◽  
Cemal Turan ◽  
Elif Ayse Erdogan-Eliuz ◽  
Mustafa Kemal Sangun

Purpose: To investigate the occurrence and antimicrobial effects of certain biochemical compounds in the epidermal mucus secretions of fish and to demonstrate their potential for biomedical applications.Methods: Crude, aqueous, and acidic epidermal mucus samples were collected from live ray specimens. Gas chromatography and gas chromatography-mass spectrometry (GC/MS) analyses were performed to identify the biochemical compounds present in the mucus. The spectrophotometric broth microdilution method was used to determine the antibacterial and antifungal properties of the mucus extracts. The bacterial strains, Bacillus subtilis, Escherichia coli, Enterococcus faecalis, and Klebsiella pneumonia, were used for the tests, as well as the fungal strains, Candida parapsilosis and Candida albicans.Results: GC/MS analysis revealed the presence of several hydrocarbon-derived compounds in the epidermal mucus of the two ray species. The acidic extract of G. altavela epidermal mucus produced a high MIC value, indicating the highest inhibitory effect of 8.64 μL against E. coli, while the crude extract of G. altavela epidermal mucus (41.13 μL against B. subtilis) was the least effective. Conclusion: Epidermal mucus extracts, especially when acid-based, displays strong antimicrobial properties against all the tested pathogens. These findings suggest the plants possess some potential for the development of novel antimicrobial components for applications in medicine. Keywords: Fish, Ray species, Epidermal mucus, Antimicrobial properties, Bioactive compounds


2021 ◽  
Vol 5 (1) ◽  
pp. 020-028
Author(s):  
Fernandes Laura Silva ◽  
da Costa Ygor Ferreira Garcia ◽  
de Bessa Martha Eunice ◽  
Ferreira Adriana Lucia Pires ◽  
do Amaral Corrêa José Otávio ◽  
...  

Morbidity and mortality of the infected patients by multidrug-resistant bacteria have increased, emphasizing the urgency of fight for the discovery of new innovative antibiotics. In this sense, natural products emerge as valuable sources of bioactive compounds. Among the biodiversity, Eryngium pristis Cham. & Schltdl. (Apiaceae Lindl.) is traditionally used to treat thrush and ulcers of throat and mouth, as diuretic and emmenagogue, but scarcely known as an antimicrobial agent. With this context in mind, the goals of this study were to investigate the metabolic profile and the antibacterial activity of ethanolic extract (EE-Ep) and hexane (HF-Ep), dichloromethane (DF-Ep), ethyl acetate (EAF-Ep) and butanol (BF-Ep) fractions from E. pristis leaves. Gas Chromatography-Mass Spectrometry (GC-MS) was performed to stablish the metabolic profile and revealed the presence of 12 and 14 compounds in EAF-Ep and HF-Ep, respectively. β-selinene, spathulenol, globulol, 2-methoxy-4-vinylphenol, α-amyrin, β-amyrin, and lupeol derivative were some of phytochemicals identified. The antibacterial activity was determined by Minimal Inhibitory Concentration (MIC) using the broth micro-dilution against eight ATCC® and five methicillin-resistant Staphylococcus aureus (MRSA) clinical strains. HF-Ep was the most effective (MIC ≤ 5,000 µg/µL), being active against the largest part of tested Gram-positive and Gram-negative bacterial strains, including MRSA, with exception of Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 9027) and (ATCC 27853). These results suggest that E. pristis is a natural source of bioactive compounds for the search of new antibiotics which can be an interesting therapeutic approach to recover patients mainly infected by MRSA strains.


Author(s):  
Velusamy Arumugam ◽  
Manigandan Venkatesan ◽  
Karthi Sengodan ◽  
Umamaheswari Sundaresan ◽  
Satheesh Kumar Palanisamy

In this present study, we conducted untargeted metabolic profiling using Gas Chromatography-Mass Spectrometry (GC-MS) analysis of ascidian Didemnum bistratum to assess the chemical constituents by searching in NIST library with promising biological properties against anti-bacterial and Zika virus vector mosquitocidal Properties. Metabolites, steroids and fatty acids are abundant in crude compounds of ascidian D. bistratum and showed potential zone growth inhibition against bacterial strains Kluyvera ascorbate (10 mm). The active crude compounds of D. bistratum exhibited prominent larvicidal activity against the Zika vector mosquitoes of Aedes aegypti and Cluex quinquefasciatus (LC50 values of 0.4436 to 2.23 mg/mL). The findings of this study provide a first evidence of the biological properties exhibited by D. bistratum extracts, thus increasing the knowledge about the Zika virus vector mosquitocidal properties of ascidian. Overall, ascidian D. bistratum are promising and biocontrol or eco-friendly tool against A. aegypti and C. quinquefasciatus with prospective toxicity against non-target organisms.


2020 ◽  
Vol 17 (36) ◽  
pp. 18-31
Author(s):  
Ahmad khadem HACHIM ◽  
Rashid Rahim HATEET ◽  
Tawfik Muhammad MUHSIN

The purpose of the present work aimed at exploring the potential biochemical components and biological activities of an organic extract of the white truffle Tirmania nivea collected from the Iraqi desert, then test the organic extract against the Cytotoxicity on Human Larynx carcinoma cells and selected strains of pathogenic bacteria. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry GC/MSS were used to analyze mycochemical compositions. The antibacterial activity and Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) was investigated using a disk diffusion agar method. The truffle extract's cytotoxicity effect against the larynx cell line (Hep-2) was assessed by the MTT assay (in vitro). FTIR results provided the presence of phenol, carboxylic acid, and alkane's functional group, The GC-MS analysis of T. nivea disclose the existence of nineteen compounds that can contribute to the pharmaceutical properties of the truffle. As for antibacterial activity result, A growth inhibition activity of truffle extract at (18-40 mm inhibition zones) against the tested pathogenic bacterial strains was detected, which minimum inhibitory concentration values ranged from 3.12 to 6.25 mg/mL for Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923) Respectively. The results of cytotoxicity shown that the organic truffle extract exhibited a high inhibitory rate (52.685%) against cell line (Hep-2) at a concentration of 1.56 ?g/mL. In this work, the results showed that the organic extracts of T. nivea are very promising as cancer cytotoxicity and antibacterial agent for future medical applications.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3153
Author(s):  
Georgia Papaioannou ◽  
Ioanna Kosma ◽  
Anastasia V. Badeka ◽  
Michael G. Kontominas

The purpose of this study was to determine the profile of volatile compounds (aroma) and overall flavor in dessert yogurts prepared from cow and goat milk, using three different, commercially available starter cultures, in the presence or absence of probiotic bacteria and to correlate this to organoleptic evaluation results obtained using a consumer acceptability method. The extraction of volatile compounds was carried out by solid phase micro-extraction; separation and analysis by gas chromatography-mass spectrometry. Variations among the different classes of compounds (i.e., aldehydes, alcohols, ketones, volatile acids, hydrocarbons, and terpenes) were recorded for different treatments. The results showed that the main volatiles in the cow milk dessert yogurts without Bifidobacterium BB-12 were: acetaldehyde, 2,3-butanedione, 2,3-pentanedione, 3-OH-2-butanone, 2-propanone, hexanoic acid and limonene). Respective volatiles in cow milk dessert yogurts with Bifidobacterium BB-12 were: acetaldehyde, pentanal, hexanal, the same ketones, acetic acid and limonene). The volatiles in goat milk dessert yogurts without Lactobacillus acidophilus LA-5 were: acetaldehyde, the same ketones, no carboxylic acids, limonene, camphene, α- and β-pinene. Respective volatiles in goat milk dessert yogurts with Lactobacillus acidophilus LA-5 were: aldehydes acetaldehyde, the same ketones, butanoic acid, α-pinene and camphene varying in concentration in different samples. Based on the results of volatiles and organoleptic evaluation, it can be concluded that dessert yogurts from cow milk without probiotic bacterial strains using the mild and classic starter cultures, and dessert yogurts from goat milk with probiotic bacterial strains using the classic and acidic starter cultures are found to be more organoleptically acceptable by consumers. In most cases, a positive correlation was found between dessert yogurt organoleptically determined flavor and volatiles (aldehydes, ketones and carboxylic acids).


2020 ◽  
Vol 10 (8) ◽  
pp. 2837
Author(s):  
Rubén Forján ◽  
Iván Lores ◽  
Carlos Sierra ◽  
Diego Baragaño ◽  
José Luis R. Gallego ◽  
...  

A bioslurry reactor was designed and used to treat loamy clay soil polluted with polycyclic aromatic hydrocarbons (PAHs). To this end, biostimulation alone, or combined with bioaugmentation with two bacterial strains (Rhodocccus erythropolis and Pseudomonas stuzeri) previously isolated from the polluted site, was applied. The PAH concentrations decreased notably after 15 days in all of the treatments. The concentrations of the two- and three-ring compounds fell by >80%, and, remarkably, the four- to six-ring PAHs also showed a marked decrease (>70%). These results thus indicate the capacity of bioslurry treatments to improve, notably, the degradation yields obtained in a previous real-scale remediation carried out using biopiles. In this sense, the remarkable results for recalcitrant PAHs can be attributed to the increase pollutants’ bioavailability achieves in the slurry bioreactors. Regarding bioaugmentation, although treatment with R. erythropolis led to a somewhat greater reduction of lighter PAHs at 15 days, the most time-effective treatment was achieved using P. stutzeri, which led to an 84% depletion of total PAHs in only three days. The effects of microbial degradation of other organic compounds were also monitored by means of combined qualitative and quantitative gas chromatography mass spectrometry (GC–MS) tools, as was the evolution of microbial populations, which was analyzed by culture and molecular fingerprinting experiments. On the basis of our findings, bioslurry technology emerges as a rapid and operative option for the remediation of polluted sites, especially for fine soil fractions with a high load of recalcitrant pollutants.


Sign in / Sign up

Export Citation Format

Share Document