scholarly journals Research and Construct of Low Power, Excessive-Velocity Comparators using Cmos Generation with Low Deliver Voltages for Adcs

The evaluation of many comparator outcomes for the given requirement having excessive velocity using analog to digital converters is growing, this are controlled using CMOS comparators which are successful when delivering the low voltage with high efficiency. The comparators are primary part of numerous simple to computerized converters. The prerequisite for low-control, rapid simple to advanced converters is increasing. Thus comparators are generally utilized in the present innovation because of its quick operational speed and high precision. The quickly developing versatile gadget requires low power and high operational capacities which should be improved. A concise investigation of traditional double tail voltage comparator is done and dependent on that, a low power and region productive comparator is displayed. Another comparator is planned so as to decrease the postponement of ordinary comparators and diminish the power utilization of the gadget. Furthermore, the Reproduction is finished by Leather Treated Simple Plan Condition. At last we study about conventional dual tail voltage comparator which is done based on low power and area efficient comparator. In this simulation of proposed comparator is occurs a 180nm CMOS technology its consumes the power of 69µW at 1.2v Ac power supply voltage.

Threshold Inverter Quantization (TIQ) for applications of system-on-chip (SoC) depending on CMOS flash analog-to-digital converter (ADC). The TIQ technique which uses two cascaded CMOS inverters as a voltage comparator. However, this TIQ method must be created to meet the latest SoC trends, which force ADCs to be integrated with another electronic circuit on the chip and focus on low-power and low-voltage applications. TIQ comparator reduced the impact of variations in the process, temperature, and power supply voltage. Therefore, we obtained a higher TIQ flash ADC speed and resolution. TIQ flash ADC reduced / managed power dissipation. We obtain large power savings by managing the power dissipation in the comparator. Furthermore, the new comparator has a huge benefit in power dissipation and noise rejection comparative to the TIQ comparator [1]. The findings indicate that the TIQ flash ADC based on Modied mux attain heavy-speed transformation and has a tiny size, low-power dissipation and operation of lowvoltage compared to another flash ADCs.


The technology has grown at an ultra-fast pace along with the world. Small devices with less power and high efficiency are in demand. As the circuit size gets smaller, the power requirement increases due to a greater number of transistors. A pre-scaler is a circuit which reduces the high frequency signal to a low frequency signal by integer division. A new approach to low power pre-scaler is proposed in this paper, which is an add-on to the conventional pre-scaler circuit. A true single-phase clock (TSPC) circuit reduces the skew problems in the clock and is used to realize latches and flip-flops. The objective of low power is fulfilled by incorporating the Adaptive Voltage Level Source (AVLS) to TSPC based circuit. The proposed AVLS-TSPC based pre-scaler was analyzed for a frequency of 10 MHz with a supply voltage of 1.8 V for both divide by 2 and 3 modes. The proposed pre-scaler consumes considerably lesser power when compared to that of the existing pre-scaler circuit. The circuits are implemented in 180 nm CMOS technology using Cadence Virtuoso and simulated using Cadence Spectre.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 69 ◽  
Author(s):  
Taufiq Alif Kurniawan ◽  
Toshihiko Yoshimasu

This paper presents a 2.5-GHz low-voltage, high-efficiency CMOS power amplifier (PA) IC in 0.18-µm CMOS technology. The combination of a dual-switching transistor (DST) and a third harmonic tuning technique is proposed. The DST effectively improves the gain at the saturation power region when the additional gain extension of the secondary switching transistor compensates for the gain compression of the primary one. To achieve high-efficiency performance, the third harmonic tuning circuit is connected in parallel to the output load. Therefore, the flattened drain current and voltage waveforms are generated, which in turn reduce the overlapping and the dc power consumption significantly. In addition, a 0.5-V back-gate voltage is applied to the primary switching transistor to realize the low-voltage operation. At 1 V of supply voltage, the proposed PA has achieved a power added efficiency (PAE) of 34.5% and a saturated output power of 10.1 dBm.


Author(s):  
Kanan Bala Ray ◽  
Sushanta Kumar Mandal ◽  
Shivalal Patro

<em>In this paper floating gate MOS (FGMOS) along with sleep transistor technique and leakage control transistor (LECTOR) technique has been used to design low power SRAM cell. Detailed investigation on operation, analysis and result comparison of conventional 6T, FGSRAM, FGSLEEPY, FGLECTOR and FGSLEEPY LECTOR has been done. All the simulations are done in Cadence Virtuoso environment on 45 nm standard CMOS technology with 1 V power supply voltage. Simulation results show that FGSLEEPY LECTOR SRAM cell consumes very low power and achieves high stability compared to conventional FGSRAM Cell</em>


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 765 ◽  
Author(s):  
Leila Safari ◽  
Gianluca Barile ◽  
Giuseppe Ferri ◽  
Vincenzo Stornelli

In this paper, a new low-voltage low-power dual-mode universal filter is presented. The proposed circuit is implemented using inverting current buffer (I-CB) and second-generation voltage conveyors (VCIIs) as active building blocks and five resistors and three capacitors as passive elements. The circuit is in single-input multiple-output (SIMO) structure and can produce second-order high-pass (HP), band-pass (BP), low-pass (LP), all-pass (AP), and band-stop (BS) transfer functions. The outputs are available as voltage signals at low impedance Z ports of the VCII. The HP, BP, AP, and BS outputs are also produced in the form of current signals at high impedance X ports of the VCIIs. In addition, the AP and BS outputs are also available in inverting type. The proposed circuit enjoys a dual-mode operation and, based on the application, the input signal can be either current or voltage. It is worth mentioning that the proposed filter does not require any component matching constraint and all sensitivities are low, moreover it can be easily cascadable. The simulation results using 0.18 μm CMOS technology parameters at a supply voltage of ±0.9 V are provided to support the presented theory.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350053 ◽  
Author(s):  
S. REKHA ◽  
T. LAXMINIDHI

This paper presents an active-RC continuous time filter in 0.18 μm standard CMOS technology intended to operate on a very low supply voltage of 0.5 V. The filter designed, has a 5th order Chebyshev low pass response with a bandwidth of 477 kHz and 1-dB passband ripple. A low-power operational transconductance amplifier (OTA) is designed which makes the filter realizable. The OTA uses bulk-driven input transistors and feed-forward compensation in order to increase the Dynamic Range and Unity Gain Bandwidth, respectively. The paper also presents an equivalent circuit of the OTA and explains how the filter can be modeled using descriptor state-space equations which will be used for design centering the filter in the presence of parasitics. The designed filter offers a dynamic range of 51.3 dB while consuming a power of 237 μW.


Author(s):  
P.A. Gowri Sankar ◽  
G. Sathiyabama

The continuous scaling down of metal-oxide-semiconductor field effect transistors (MOSFETs) led to the considerable impact in the analog-digital mixed signal integrated circuit design for system-on-chips (SoCs) application. SoCs trends force ADCs to be integrated on the chip with other digital circuits. These trends present new challenges in ADC circuit design based on existing CMOS technology. In this paper, we have designed and analyzed a 3-bit high speed, low-voltage and low-power flash ADC at 32nm CNFET technology for SoC applications. The proposed ADC utilizes the Threshold Inverter Quantization (TIQ) technique that uses two cascaded carbon nanotube field effect transistor (CNFET) inverters as a comparator. The TIQ technique proposed has been developed for better implementation in SoC applications. The performance of the proposed ADC is studied using two different types of encoders such as ROM and Fat tree encoders. The proposed ADCs circuits are simulated using Synopsys HSPICE with standard 32nm CNFET model at 0.9 input supply voltage. The simulation results show that the proposed 3 bit TIQ technique based flash ADC with fat tree encoder operates up to 8 giga samples per second (GSPS) with 35.88µW power consumption. From the simulation results, we observed that the proposed TIQ flash ADC achieves high speed, small size, low power consumption, and low voltage operation compared to other low power CMOS technology based flash ADCs. The proposed method is sensitive to process, temperature and power supply voltage variations and their impact on the ADC performance is also investigated.


2013 ◽  
Vol 760-762 ◽  
pp. 561-566
Author(s):  
Si Kui Ren ◽  
Zhi Qun Li

This paper presents a low power low voltage 7bit 16MS/s SAR ADC (successive approximation register analog-to-digital converter) for the application of ZigBee receiver. The proposed 7-bit ADC is designed and simulated in 180nm RF CMOS technology. Post simulation results show that at 1.0-V supply and 16 MS/s, the ADC achieves a SNDR (signal-to-noise-and-distortion ratio) and SFDR (Spurious Free Dynamic Range) are 43.6dB, 57.4dB respectively. The total power dissipation is 228μW, and it occupies a chip area of 0.525 mm2. It results in a figure-of-merit (FOM) of 0.11pJ/step.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950172
Author(s):  
Mehdi Bandali ◽  
Alireza Hassanzadeh ◽  
Masoume Ghashghaie ◽  
Omid Hashemipour

In this paper, an 8-bit ultra-low-power, low-voltage current steering digital-to-analog converter (DAC) is presented. The proposed DAC employs a new segmented structure that results in low integral nonlinearity (INL) and high spurious-free dynamic range (SFDR). Moreover, this DAC utilizes a low-voltage current cell. The low-voltage characteristic of the current cell is achieved by connecting the body of MOSFET switches to their sources. Utilizing a low supply voltage along with a low bias current in the current cells results in about 623.81-[Formula: see text]W power consumption in 140-MS/s sample rate, which is very small compared to previous reports. The post-layout simulation results in 180-nm CMOS technology and [Formula: see text]-V supply voltage with the sample rate of 140[Formula: see text]MS/s show SFDR [Formula: see text] 64.37[Formula: see text]dB in the Nyquist range. The differential nonlinearity (DNL) and INL of the presented DAC are 0.1254 LSB and 0.1491 LSB, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ziad Alsibai ◽  
Salma Bay Abo Dabbous

A new ultra-low-voltage (LV) low-power (LP) bulk-driven quasi-floating-gate (BD-QFG) operational transconductance amplifier (OTA) is presented in this paper. The proposed circuit is designed using 0.18 μm CMOS technology. A supply voltage of ±0.3 V and a quiescent bias current of 5 μA are used. The PSpice simulation result shows that the power consumption of the proposed BD-QFG OTA is 13.4 μW. Thus, the circuit is suitable for low-power applications. In order to confirm that the proposed BD-QFG OTA can be used in analog signal processing, a BD-QFG OTA-based diodeless precision rectifier is designed as an example application. This rectifier employs only two BD-QFG OTAs and consumes only 26.8 μW.


Sign in / Sign up

Export Citation Format

Share Document