scholarly journals A Novel NOR-Type TCAM Deploy Dual-VT cell with OR-Type Cascade Match-Line Structure

We look over improvements in the schemes of large size content addressable memory (CAM). A CAM is a very important device that executes the routing table function within a single clock cycle in network router to transmit information over the network. CAMs are particularly popular in network switches to classify and sending information packets, they are also helpful in other different applications that require fast information retrieval from routing table. The primary CAM configuration challenge is to decrease power dissipation related with the lot of parallel activity in memory circuitry during search operation. As innovation going on in technology scaling, it continues minimizing the dynamic power dissipation of CAMs, however it also rises the leakage current of transistors. Thus, the static power is turning into a noteworthy bit of the whole power dissipation in CAMs. Here, we introduced a procedure which advantageous for high capacity Ternary Content Addressable Memory (TCAM) that minimize the static power dissipation in SRAM storage cell part and speed up activity in searching part of TCAM cell. We also divide whole memory into equivalent segments which improve performance of our design. We examine the different schemes and introduced the trade-offs of applying the techniques. Simulation and design have done by using Tanned EDA V.16 tool. For recreations of Low power TCAM structures we utilized predictive technology model (PTM) 45nm for high performance (HP) and low power (LP), which incorporate metal gate, high-k and stress effect of CMOS technology.

In network routers, Ternary Content Addressable Memory (TCAM)[1] based search engines take an important role. One of the improved versions of Content Addressable Memory (CAM) is TCAM. For high speed and broader searching operation TCAM is used. Unlike normal CAM, TCAM has 3 logic states: 0, 1, ‘X’. In TCAM within one single clock cycle, search operation can be performed. That is why it is called special type of memory. Also, quick search ability is one of the popular features of TCAM. To compare the search and stored data, TCAM array acts parallel in every location. But high power dissipation is the main disadvantage of TCAM. To overcome this power dissipation in this paper we proposed a low power TCAM implementation by using Reversible logic.[2] Reversible logic has less heat dissipating characteristics property with respect to irreversible gate. Also, Reversible logic has ultra-low power characteristics feature. In recent past it has been proved that reversible gates can implement any Boolean function.


Author(s):  
B.T. Krishna ◽  
◽  
Shaik. mohaseena Salma ◽  

A flux-controlled memristor using complementary metal–oxide–(CMOS) structure is presented in this study. The proposed circuit provides higher power efficiency, less static power dissipation, lesser area, and can also reduce the power supply by using CMOS 90nm technology. The circuit is implemented based on the use of a second-generation current conveyor circuit (CCII) and operational transconductance amplifier (OTA) with few passive elements. The proposed circuit uses a current-mode approach which improves the high frequency performance. The reduction of a power supply is a crucial aspect to decrease the power consumption in VLSI. An offered emulator in this proposed circuit is made to operate incremental and decremental configurations well up to 26.3 MHZ in cadence virtuoso platform gpdk using 90nm CMOS technology. proposed memristor circuit has very little static power dissipation when operating with ±1V supply. Transient analysis, memductance analysis, and dc analysis simulations are verified practically with the Experimental demonstration by using ideal memristor made up of ICs AD844AN and CA3080, using multisim which exhibits theoretical simulation are verified and discussed.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012080
Author(s):  
M. Srinivas ◽  
K.V. Daya Sagar

Abstract Currently, energy consumption in the digital circuit is a key design parameter for emerging mobile products. The principal cause of the power dissipation during idle mode is leakage currents, which are rising dramatically. Sub-threshold leakage is increased by the scaling of threshold voltage when gate current leakage increases because oxide thickness is scaled. With rising demands for mobile devices, leakage energy consumption has received even greater attention. Since a mobile device spends most of its time in standby mode, leakage power savings need to prolong the battery life. That is why low power has become a significant factor in CMOS circuit design. The required design and simulation of an AND gate with the BSIM4 MOS parameter model at 27 0C, supply voltage of 0,70V with CMOS technology of 65nm are the validation of the suitability of the proposed circuit technology. AND simulation. The performance parameters for the two AND input gate are compared with the current MTCMOS and SCCMOS techniques, such as sub-threshold leakage power dissipations in active and standby modes, the dynamic dissipation, and propagation period. The proposed hybrid super cutoff complete stack technique compared to the current MTCMOS technology shows a reduction in sub-threshold dissipation power dissipation by 3. 50x and 1.15x in standby modes and active modes respectively. The hybrid surface-cutting technique also shows savings of 2,50 and 1,04 in power dissipation at the sub-threshold in standby modes and active modes compared with the existing SCCMOS Technique.


2012 ◽  
Vol 21 (08) ◽  
pp. 1240025 ◽  
Author(s):  
CHUN-YUAN CHENG ◽  
JINN-SHYAN WANG ◽  
CHENG-TAI YEH

This paper presents an all-digital delay locked loop (ADDLL) that uses asynchronous-deskewing technology and achieves low power/voltage, small jitter, fast locking, and high process, voltage, and temperature (PVT)-variation tolerance. The measurement results show that the maximum frequency is 100 MHz at 0.35 V with 19 μW power dissipation, 62 ps peak-to-peak jitter, and 3 locking cycles. When operated at 0.5 V, the measured maximal operating clock frequency is 450 MHz with 12 ps peak-to-peak jitter, 6 locking cycles and 119 μW power dissipation. The ADDLL is fabricated with 55 nm CMOS technology, and the active area is only 0.019 mm2.


2021 ◽  
Vol 23 (11) ◽  
pp. 172-183
Author(s):  
Ketan J. Raut ◽  
◽  
Abhijit V. Chitre ◽  
Minal S. Deshmukh ◽  
Kiran Magar ◽  
...  

Since CMOS technology consumes less power it is a key technology for VLSI circuit design. With technologies reaching the scale of 10 nm, static and dynamic power dissipation in CMOS VLSI circuits are major issues. Dynamic power dissipation is increased due to requirement of high speed and static power dissipation is at much higher side now a days even compared to dynamic power dissipation due to very high gate leakage current and subthreshold leakage. Low power consumption is equally important as speed in many applications since it leads to a reduction in the package cost and extended battery life. This paper surveys contemporary optimization techniques that aims low power dissipation in VLSI circuits.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ismail Gassoumi ◽  
Lamjed Touil ◽  
Bouraoui Ouni ◽  
Abdellatif Mtibaa

Quantum-dot cellular automata (QCA) technology is one of the emerging technologies that can be used for replacing CMOS technology. It has attracted significant attention in the recent years due to its extremely low power dissipation, high operating frequency, and a small size. In this study, we demonstrate an n-bit parity generator circuit by utilizing QCA technology. Here, a novel XOR gate is used in the synthesis of the proposed circuit. The proposed gate is based on electrostatic interactions between cells to perform the desired function. The comparison results demonstrate that the designed QCA circuits have advantages compared to other circuits in terms of cell count, area, delay, and power consumption. The QCADesigner software, as widely used QCA circuit design and verification, has been used to implement and to verify all of the designs in this study. Power dissipation has been computed for the proposed circuit using accurate QCAPro power estimator tool.


VLSI Design ◽  
2001 ◽  
Vol 12 (3) ◽  
pp. 415-429
Author(s):  
Abdoul Rjoub ◽  
Odysseas Koufopavlou

Novel low-power circuits based on low swing voltage technique, in the internal nodes of bus architectures, are proposed. Different classes of driver/receiver and repeater circuits are presented. They are implemented on conventional CMOS technology. The proposed technique is based on inserting a variable number of MOSFET transistors in the driver circuits, causing variable low swing voltage levels in the output of the driver circuits. In order to re-pull up the low swing voltage to full swing, innovated high-speed, crosscoupled latch voltage receiver circuits are proposed. In applications having high load capacitance due to long interconnections, novel repeater circuits, based also on low swing voltage technique, are introduced. The difference between the values of threshold voltage of the nMOS transistor and the pMOS transistors is exploited to decrease the power dissipation. The effect of the proposed technique in noise margins is also analysed.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-7
Author(s):  
Krishna B.T. ◽  
mohaseena Salma Shaik.

A flux-controlled memristor using complementary metal–oxide–(CMOS) structure is presented in this study. The proposed circuit provides higher power efficiency, less static power dissipation, lesser area, and can also reduce the power supply by using CMOS 90nm technology. The circuit is implemented based on the use of a second-generation current conveyor circuit (CCII) and operational transconductance amplifier (OTA) with few passive elements. The proposed circuit uses a current-mode approach which improves the high-frequency performance. The reduction of a power supply is a crucial aspect to decrease the power consumption in VLSI. An offered emulator in this proposed circuit is made to operate incremental and decremental configurations well up to 26.3 MHZ in cadence virtuoso platform gpdk using 90nm CMOS technology. proposed memristor circuit has very little static power dissipation when operating with ±1V supply. Transient analysis, memductance analysis, and dc analysis simulations are verified practically with the Experimental demonstration by using ideal memristor made up of ICs AD844AN and CA3080, using multisim which exhibits theoretical simulation are verified and discussed.


2021 ◽  
Vol 15 ◽  
pp. 240-248
Author(s):  
Hicham Akhamal ◽  
Mostafa Chakir ◽  
Hatim Ameziane ◽  
Mohammed Akhamal ◽  
Kamal Zared ◽  
...  

This paper presents a nano-power Low Drop-Out (LDO) voltage regulator circuit for Radio-Frequency System-on-Chip (RF SoC) applications, this LDO is designed for a smaller dimension due to CMOS technology and in the weak inversion region, can thus be used to minimize power loss of LDO regulator without transientresponse degradation. The proposed structure its low power dissipation make it ideal for RF system-on-chip applications that require low power dissipation under different loading conditions. In order to optimize performance for LDO, the proposed amplifier helps to minimize power of LDO regulators without using any onchip and off-chip compensation capacitors. The output spot noise at 100Hz and 1 kHz are 200nV/sqrt (Hz) and 6nV/sqrt (Hz), respectively. The active area of the circuit is 850 µm2 . The regulator operates with supply voltages from 1.2V to 2V.


2020 ◽  
Vol 8 (6) ◽  
pp. 4885-4890

This paper presents the novel way to deal with diminish power utilization in a ternary content addressable memory (TCAM) designed in current innovation. The main aim of this TCAM design is to reduce the dynamic power consumption. In TCAM large amount of the power consumption happens during search operation, so we focussed on this area. Here right now give pragmatic plan of a TCAM which is arranged for low-power applications. Simulation of this design has done in Tanned EDA V.16 tool. For simulations of Low power TCAM designs we used predictive technology model (PTM) 45nm for high-performance applications which include metal gate, high-k and stress impact of CMOS technology.


Sign in / Sign up

Export Citation Format

Share Document