Research on the depth of field of soldering defect inspection for special integrated circuit units board

2015 ◽  
Vol 41 (3) ◽  
pp. 261-264
Author(s):  
许增朴 XU Zengpu ◽  
王鑫 WANG Xin ◽  
王永强 WANG Yongqiang ◽  
周聪玲 ZHOU Congling
Author(s):  
John J. Imai

The SEM plays an important role in the performance of failure analyses of Integrated Circuits. As the complexity and density of electrical functions increases on the silicon chip, the more it is nescessary to analyze the detailed characteristics of the failed device. The types of failures of interest are those that have marginal or catastrophic performance characteristics and show no obvious visual defects.Three aspects of the SEM capabilities will be discussed.Standard high power magnification operationVoltage Contrast mode of operationEmission X-ray analysis operationVarious physical characteristics of an Integrated Circuit can be viewed on the SEM. These characteristics are difficult to view on a high power optical microscope due to the depth of field limitations. These characteristics include the following.Oxide stepsMetalization profile over oxide stepsWire bond analysisEtched metalization characteristicsThe Voltage Contrast mode of operation allows direct visual observation of electrical activity on the surface of the silicon chip.


2013 ◽  
Vol 650 ◽  
pp. 543-547
Author(s):  
Cong Ling Zhou ◽  
Jun Qiang Wu ◽  
Yong Qiang Wang ◽  
Zeng Pu Xu

This paper introduces a soldering defect inspection system for a special integrated circuit board aided by the computer vision. Space occluder is fixed on this special integrated circuit board, which makes the light blocked from the CCD camera to the chip pins to be inspected. This system can inspect the light blocked soldering defects of the chip pins through the structure design of hardware system and the software system. It is a cheap but automatic soldering defect inspecting system, and can do the soldering defect detection instead of manual visual inspection, and improve the detection speed and stability.


2020 ◽  
Vol 9 (1) ◽  
pp. 182-189 ◽  
Author(s):  
Gaoyang Zhao ◽  
Zhen Wei ◽  
Weilei Wang ◽  
Daohuan Feng ◽  
Aoxue Xu ◽  
...  

AbstractWith the development of integrated circuit technology, especially after entering the sub-micron process, the reduction of critical dimensions and the realization of high-density devices, the flatness between integrated circuit material layers is becoming more and more critical. Because conventional mechanical polishing methods inevitably produce scratches of the same size as the device in metal or even dielectric layers, resulting in depth of field and focus problems in lithography. The first planarization technique to achieve application is spin on glass (SOG) technology. However, this technology will not only introduce new material layers, but will also fail to achieve the global flattening required by VLSI and ULSI technologies. Moreover, the process instability and uniformity during spin coating do not meet the high flatness requirements of the wafer surface. Also, while some techniques such as reverse etching and glass reflow can achieve submicron level regional planarization. After the critical dimension reaches 0.35 microns (sub-micron process), the above methods cannot meet the requirements of lithography and interconnect fabrication. In the 1980s, IBM first introduced the chemical mechanical polishing (CMP) technology used to manufacture precision optical instruments into its DRAM manufacturing [1]. With the development of technology nodes and critical dimensions, CMP technology has been widely used in the Front End Of Line (FEOL) and Back End Of Line (BEOL) processes [2]. Since the invention of chemical mechanical polishing, scientists have not stopped studying its internal mechanism. From the earliest Preston Formula (1927) to today’s wafer scale, chip scale, polishing pad contact, polishing pad - abrasive - wafer contact and material removal models, there are five different scale models from macro to the micro [3]. Many research methods, such as contact mechanics, multiphase flow kinetics, chemical reaction kinetics, molecular dynamics, etc., have been applied to explain the principles of chemical mechanical polishing to establish models. This paper mainly introduces and summarizes the different models of chemical mechanical polishing technology. The various application scenarios and advantages and dis-advantages of the model are discussed, and the development of modeling technology is introduced.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Author(s):  
Emil Bernstein

An interesting method for examining structures in g. pig skin has been developed. By modifying an existing technique for splitting skin into its two main components—epidermis and dermis—we can in effect create new surfaces which can be examined with the scanning electron microscope (SEM). Although this method is not offered as a complete substitute for sectioning, it provides the investigator with a means for examining certain structures such as hair follicles and glands intact. The great depth of field of the SEM complements the technique so that a very “realistic” picture of the organ is obtained.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


Author(s):  
A.M. Jones ◽  
A. Max Fiskin

If the tilt of a specimen can be varied either by the strategy of observing identical particles orientated randomly or by use of a eucentric goniometer stage, three dimensional reconstruction procedures are available (l). If the specimens, such as small protein aggregates, lack periodicity, direct space methods compete favorably in ease of implementation with reconstruction by the Fourier (transform) space approach (2). Regardless of method, reconstruction is possible because useful specimen thicknesses are always much less than the depth of field in an electron microscope. Thus electron images record the amount of stain in columns of the object normal to the recording plates. For single particles, practical considerations dictate that the specimen be tilted precisely about a single axis. In so doing a reconstructed image is achieved serially from two-dimensional sections which in turn are generated by a series of back-to-front lines of projection data.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Sign in / Sign up

Export Citation Format

Share Document