Analysis of Integrated Circuits on the Scanning Electron Microscope

Author(s):  
John J. Imai

The SEM plays an important role in the performance of failure analyses of Integrated Circuits. As the complexity and density of electrical functions increases on the silicon chip, the more it is nescessary to analyze the detailed characteristics of the failed device. The types of failures of interest are those that have marginal or catastrophic performance characteristics and show no obvious visual defects.Three aspects of the SEM capabilities will be discussed.Standard high power magnification operationVoltage Contrast mode of operationEmission X-ray analysis operationVarious physical characteristics of an Integrated Circuit can be viewed on the SEM. These characteristics are difficult to view on a high power optical microscope due to the depth of field limitations. These characteristics include the following.Oxide stepsMetalization profile over oxide stepsWire bond analysisEtched metalization characteristicsThe Voltage Contrast mode of operation allows direct visual observation of electrical activity on the surface of the silicon chip.

Author(s):  
Alexander Sorkin ◽  
Chris Pawlowicz ◽  
Alex Krechmer ◽  
Michael W. Phaneuf

Abstract Competitive circuit analysis of Integrated Circuits (ICs) is one of the most challenging types of analysis. It involves multiple complex IC die de-processing/de-layering steps while keeping precise planarity from metal layer to metal layer. Each step is followed by Scanning Electron Microscope (SEM) imaging together with mosaicking that subsequently passes through an image recognition and Graphic Database System (GDS) conversion process. This conventional procedure is quite time and resource consuming. The current paper discusses and demonstrates a new inventive methodology of circuit tracing on an IC using known FIB Passive Voltage Contrast (PVC) effects [1]. This technique provides significant savings in time and resources.


Author(s):  
Danilo Golijanin

Emission of visible light from forward and reverse biased silicon p-n junctions due to the radiative electron-hole recombination has been known since the mid-50s. The weak light emission was also seen from a silicon-dioxide dielectric in an integrated gate oxide capacitor formed between a polysilicon gate and an (n or p) well in an integrated circuit. The difference in carrier energies for each of these recombination mechanisms gives rise to a specific photon wavelength (energy) distribution in the visible range. All photoemitting events are characterized by a very low level light intensity due to the low quantum efficiency of about 10−5 - 10−4 photons per one electron-hole recombination.The first practical photoemission microscope was constructed by Khurana and Chiang. They took the advantage of the advances in night vision technology and used it for imaging the faint ("invisible") light coming from various silicon structures. A typical photoemission microscope consists of an x-y-z stage with the device holder, an optical microscope, a lightsensitive camera all set within a light-tight enclosure and a computer system for image acquisition and processing.


Author(s):  
James Vickers ◽  
Seema Somani ◽  
Blake Freeman ◽  
Pete Carleson ◽  
Lubomír Tùma ◽  
...  

Abstract We report on using the voltage-contrast mechanism of a scanning electron microscope to probe electrical waveforms on FinFET transistors that are located within active integrated circuits. The FinFET devices are accessed from the backside of the integrated circuit, enabling electrical activity on any transistor within a working device to be probed. We demonstrate gigahertz-bandwidth probing at 10-nm resolution using a stroboscopic pulsed electron source.


Author(s):  
Edward Keyes ◽  
Jason Abt

Abstract Historically, the extraction of circuitry from an integrated circuit was normally within the abilities of the average FA laboratory and could be accomplished with little more than an optical microscope and film camera. Dramatic increases in the level of integration and number of metal interconnect levels coupled with shrinking feature sizes have rendered these techniques obsolete. This paper describes techniques and methods for the fast, semi-automated extraction of detailed circuit schematics from modern, nanometer scale integrated circuits.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2175
Author(s):  
Raphaël Abelé ◽  
Jean-Luc Damoiseaux ◽  
Redouane El Moubtahij ◽  
Jean-Marc Boi ◽  
Daniele Fronte ◽  
...  

In this paper, we present an infrared microscopy based approach for structures’ location in integrated circuits, to automate their secure characterization. The use of an infrared sensor is the key device for internal integrated circuit inspection. Two main issues are addressed. The first concerns the scan of integrated circuits using a motorized optical system composed of an infrared uncooled camera combined with an optical microscope. An automated system is required to focus the conductive tracks under the silicon layer. It is solved by an autofocus system analyzing the infrared images through a discrete polynomial image transform which allows an accurate features detection to build a focus metric robust against specific image degradation inherent to the acquisition context. The second issue concerns the location of structures to be characterized on the conductive tracks. Dealing with a large amount of redundancy and noise, a graph-matching method is presented—discriminating graph labels are developed to overcome the redundancy, while a flexible assignment optimizer solves the inexact matching arising from noises on graphs. The resulting automated location system brings reproducibility for secure characterization of integrated systems, besides accuracy and time speed increase.


1994 ◽  
Vol 144 ◽  
pp. 431-434
Author(s):  
M. Minarovjech ◽  
M. Rybanský

AbstractThis paper deals with a possibility to use the ground-based method of observation in order to solve basic problems connected with the solar corona research. Namely:1.heating of the solar corona2.course of the global cycle in the corona3.rotation of the solar corona and development of active regions.There is stressed a possibility of high-time resolution of the coronal line photometer at Lomnický Peak coronal station, and use of the latter to obtain crucial observations.


1994 ◽  
Vol 144 ◽  
pp. 279-282
Author(s):  
A. Antalová

AbstractThe occurrence of LDE-type flares in the last three cycles has been investigated. The Fourier analysis spectrum was calculated for the time series of the LDE-type flare occurrence during the 20-th, the 21-st and the rising part of the 22-nd cycle. LDE-type flares (Long Duration Events in SXR) are associated with the interplanetary protons (SEP and STIP as well), energized coronal archs and radio type IV emission. Generally, in all the cycles considered, LDE-type flares mainly originated during a 6-year interval of the respective cycle (2 years before and 4 years after the sunspot cycle maximum). The following significant periodicities were found:• in the 20-th cycle: 1.4, 2.1, 2.9, 4.0, 10.7 and 54.2 of month,• in the 21-st cycle: 1.2, 1.6, 2.8, 4.9, 7.8 and 44.5 of month,• in the 22-nd cycle, till March 1992: 1.4, 1.8, 2.4, 7.2, 8.7, 11.8 and 29.1 of month,• in all interval (1969-1992):a)the longer periodicities: 232.1, 121.1 (the dominant at 10.1 of year), 80.7, 61.9 and 25.6 of month,b)the shorter periodicities: 4.7, 5.0, 6.8, 7.9, 9.1, 15.8 and 20.4 of month.Fourier analysis of the LDE-type flare index (FI) yields significant peaks at 2.3 - 2.9 months and 4.2 - 4.9 months. These short periodicities correspond remarkably in the all three last solar cycles. The larger periodicities are different in respective cycles.


1977 ◽  
Vol 36 ◽  
pp. 69-74

The discussion was separated into 3 different topics according to the separation made by the reviewer between the different periods of waves observed in the sun :1) global modes (long period oscillations) with predominantly radial harmonic motion.2) modes with large coherent - wave systems but not necessarily global excitation (300 s oscillation).3) locally excited - short period waves.


1979 ◽  
Vol 44 ◽  
pp. 357-372
Author(s):  
Z. Švestka

The following subjects were discussed:(1)Filament activation(2)Post-flare loops.(3)Surges and sprays.(4)Coronal transients.(5)Disk vs. limb observations.(6)Solar cycle variations of prominence occurrence.(7)Active prominences patrol service.Of all these items, (1) and (2) were discussed in most detail and we also pay most attention to them in this report. Items (3) and (4) did not bring anything new when compared with the earlier invited presentations given by RUST and ZIRIN and therefore, we omit them.


Author(s):  
H.P. Rohr

Today, in image analysis the broadest possible rationalization and economization have become desirable. Basically, there are two approaches for image analysis: The image analysis through the so-called scanning methods which are usually performed without the human eye and the systems of optical semiautomatic analysis completely relying on the human eye.The new MOP AM 01 opto-manual system (fig.) represents one of the very promising approaches in this field. The instrument consists of an electronic counting and storing unit, which incorporates a microprocessor and a keyboard for choice of measuring parameters, well designed for easy use.Using the MOP AM 01 there are three possibilities of image analysis:the manual point counting,the opto-manual point counting andthe measurement of absolute areas and/or length (size distribution analysis included).To determine a point density for the calculation of the corresponding volume density the intercepts lying within the structure are scanned with the light pen.


Sign in / Sign up

Export Citation Format

Share Document