scholarly journals Protective Effect of Eugenol against Acetaminophen-Induced Hepatotoxicity in Human Hepatocellular Carcinoma Cells via Antioxidant, Anti-Inflammatory, and Anti-Necrotic Potency

Author(s):  
Florenly Florenly ◽  
Liena Sugianto ◽  
I Nyoman Ehrich Lister ◽  
Ermi Girsang ◽  
Chrismis Novalinda Ginting ◽  
...  

BACKGROUND: Overdoses acetaminophen (APAP) could cause acute liver failure, even though it used is for analgesics. APAP could cause hepatotoxicity due to multiple mediators of inflammation and oxidative stress. Eugenol has been reported to have anti-inflammatory and antioxidant activity but its hepatoprotective effect has not been widely reported. AIM: The purpose of this research is to know if eugenol could protect HepG2 cells from APAP. METHODS: HepG2 that induced by APAP as hepatotoxicity cells model was treated by using eugenol at 6.25 and 25 μg/mL. The protective effects of eugenol toward hepatotoxicity were evaluated by determine tumor necrosis factor-α (TNF-α) concentration, apoptotic activity, reactive oxygen species (ROS) level, also cytochrome (CYP)2E1 and GPX gene expression. RESULTS: Eugenol at 6.25 and 25 μg/mL concentration can reduce TNF-α concentration, the apoptotic, necrotic, dead cells, and ROS level. Besides it can increase the gene expression (GPX and CYP2E1). The best hepatoprotective effect was found when using the eugenol at 25 μg/mL. CONCLUSION: Therefore, eugenol can be used to protect HepG2 cells against APAP.

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1112 ◽  
Author(s):  
Jen-Chieh Tsai ◽  
Yi-An Chen ◽  
Jung-Tsung Wu ◽  
Kuan-Chen Cheng ◽  
Ping-Shan Lai ◽  
...  

The mechanism of hepatoprotective compounds is usually related to its antioxidant or anti-inflammatory effects. Black garlic is produced from garlic by heat treatment and its anti-inflammatory activity has been previously reported. Therefore, the aim of this study was to investigate the hepatoprotective effect of five different extracts of black garlic against carbon tetrachloride (CCl4)-induced acute hepatic injury (AHI). In this study, mice in the control, CCl4, silymarin, and black garlic groups were orally administered distilled water, silymarin, and different fraction extracts of black garlic, respectively, after CCl4 was injected intraperitoneally to induce AHI. The results revealed that the n-butanol layer extract (BA) and water layer extract (WS) demonstrated a hepatoprotective effect by reducing the levels of alanine aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and hepatic malondialdehyde (MDA). Furthermore, the BA and WS fractions of black garlic extract increased the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione reductase (GSH-Rd), tumor necrosis factor alpha (TNF-α), and the interleukin-1 (IL-1β) level in liver. It was concluded that black garlic exhibited significant protective effects on CCl4-induced acute hepatic injury.


Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1554
Author(s):  
Dabin Choi ◽  
Wesuk Kang ◽  
Taesun Park

The critical roles of keratinocytes and resident mast cells in skin allergy and inflammation have been highlighted in many studies. Cyclic adenosine monophosphate (cAMP), the intracellular second messenger, has also recently emerged as a target molecule in the immune reaction underlying inflammatory skin conditions. Here, we investigated whether undecane, a naturally occurring plant compound, has anti-allergic and anti-inflammatory activities on sensitized rat basophilic leukemia (RBL-2H3) mast cells and HaCaT keratinocytes and we further explored the potential involvement of the cAMP as a molecular target for undecane. We confirmed that undecane increased intracellular cAMP levels in mast cells and keratinocytes. In sensitized mast cells, undecane inhibited degranulation and the secretion of histamine and tumor necrosis factor α (TNF-α). In addition, in sensitized keratinocytes, undecane reversed the increased levels of p38 phosphorylation, nuclear factor kappaB (NF-κB) transcriptional activity and target cytokine/chemokine genes, including thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) and interleukin-8 (IL-8). These results suggest that undecane may be useful for the prevention or treatment of skin inflammatory disorders, such as atopic dermatitis, and other allergic diseases.


2019 ◽  
Vol 316 (3) ◽  
pp. R235-R242 ◽  
Author(s):  
Davide Martelli ◽  
David G. S. Farmer ◽  
Michael J. McKinley ◽  
Song T. Yao ◽  
Robin M. McAllen

The splanchnic anti-inflammatory pathway has been proposed as the efferent arm of the inflammatory reflex. Although much evidence points to the spleen as the principal target organ where sympathetic nerves inhibit immune function, a systematic study to locate the target organ(s) of the splanchnic anti-inflammatory pathway has not yet been made. In anesthetized rats made endotoxemic with lipopolysaccharide (LPS, 60 µg/kg iv), plasma levels of tumor necrosis factor-α (TNF-α) were measured in animals with cut (SplancX) or sham-cut (Sham) splanchnic nerves. We confirm here that disengagement of the splanchnic anti-inflammatory pathway in SplancX rats (17.01 ± 0.95 ng/ml, mean ± SE) strongly enhances LPS-induced plasma TNF-α levels compared with Sham rats (3.76 ± 0.95 ng/ml). In paired experiments, the responses of SplancX and Sham animals were compared after the single or combined removal of organs innervated by the splanchnic nerves. Removal of target organ(s) where the splanchnic nerves inhibit systemic inflammation should abolish any difference in LPS-induced plasma TNF-α levels between Sham and SplancX rats. Any secondary effects of extirpating organs should apply to both groups. Surprisingly, removal of the spleen and/or the adrenal glands did not prevent the reflex splanchnic anti-inflammatory action nor did the following removals: spleen + adrenals + intestine; spleen + intestine + stomach and pancreas; or spleen + intestine + stomach and pancreas + liver. Only when spleen, adrenals, intestine, stomach, pancreas, and liver were all removed did the difference between SplancX and Sham animals disappear. We conclude that the reflex anti-inflammatory action of the splanchnic nerves is distributed widely across abdominal organs.


2011 ◽  
Vol 6 (10) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Andrea Maxia ◽  
Maria Assunta Frau ◽  
Danilo Falconieri ◽  
Manvendra Singh Karchuli ◽  
Sanjay Kasture

The topical anti-inflammatory activity of the essential oil of Myrtus communis L. was studied using croton oil induced ear edema and myeloperoxidase (MPO) activity in mice, and cotton pellet induced granuloma, and serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in rats. On topical application, the oil exhibited a significant decrease in the ear edema as well as MPO activity. The oil also inhibited cotton pellet-induced granuloma and serum TNF-α and IL-6. It can be concluded that the essential oil of Myrtus communis reduces leukocyte migration to the damaged tissue and exhibits anti-inflammatory activity.


2019 ◽  
Vol 97 (5) ◽  
pp. 359-369 ◽  
Author(s):  
Rehab M. El-Sayed ◽  
Hebatalla I. Ahmed ◽  
Abd El-Lateef S. Abd El-Lateef ◽  
Azza A. Ali

Hepatic injury is one of the most common complications associated with cisplatin (CIS) use. Recently, liver protection lines are being discovered to stop the hepatic cell death due to inflammatory and apoptotic perturbations. l-arginine has protective effects in several models of liver injury. This study was designed to investigate the possible protective effect of l-arginine against CIS-induced acute hepatic injury in rats. Rats were divided into 4 groups: control, l-arginine, CIS, l-arginine + CIS. Liver function, oxidative stress, inflammatory cytokines, and apoptosis markers were assessed. l-arginine pretreatment protected the liver against CIS-induced toxicity as indicated by significantly alleviating the changes in liver function along with restoration of the antioxidant status. This finding was confirmed with the markedly improved pathological changes. l-arginine showed anti-inflammatory effect through the reduction of liver expression of iNOS, TNF-α, and NF-κβ, which were ameliorated to significant levels. Furthermore, l-arginine administration downregulated the liver expression of the apoptotic marker, caspase-3. The results recommend l-arginine as a hepatoprotective agent against CIS toxicity. Mostly, this hepatoprotective effect of l-arginine involved anti-inflammatory and anti-apoptotic activities.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 116
Author(s):  
Yu-Pin Chen ◽  
Yo-Lun Chu ◽  
Yang-Hwei Tsuang ◽  
Yueh Wu ◽  
Cheng-Yi Kuo ◽  
...  

Background: Adenine is a purine with a role in cellular respiration and protein synthesis. It is considered for its pharmacological potential. We investigated whether anti-inflammatory effect of adenine benefits on the proliferation and maturation of osteoblastic cells. Methods: Human osteoblast-like cells (MG-63) were cultured with adenine under control conditions or pre-treated with 10ng/mL of tumor necrosis factor-α (TNF-α) followed by adenine treatment. Cell viability was examined using dimethylthiazol diphenyltetrazolium bromide (MTT) assay. Expression of cytokines and osteogenic markers were analyzed using quantitative PCR (qPCR) and ELISA. Enzyme activity of alkaline phosphatase (ALP) and collagen content were measured. Results: TNF-α exposure led to a decreased viability of osteoblastic cells. Treatment with adenine suppressed TNF-α-induced elevation in IL-6 expression and nitrite oxide production in MG-63 cells. Adenine induced the osteoblast differentiation with increased transcript levels of collage and increased ALP enzyme activity. Conclusions: Adenine exerts anti-inflammatory activity in an inflammatory cell model. Adenine benefits osteoblast differentiation in normal and inflammatory experimental settings. Adenine has a potential for the use to treat inflammatory bone condition such as osteoporosis.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 486 ◽  
Author(s):  
Seon-Heui Cha ◽  
Yongha Hwang ◽  
Soo-Jin Heo ◽  
Hee-Sook Jun

Glucose degradation is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Glyoxalase-1 (Glo-1) is a ubiquitous cellular enzyme that participates in the detoxification of methylglyoxal (MGO), a cytotoxic byproduct of glycolysis that induces protein modification (advanced glycation end-products, AGEs) and inflammation. Here, we investigated the anti-inflammatory effect of indole-4-carboxaldehyde (ST-I4C), which was isolated from the edible seaweed Sargassum thunbergii, on MGO-induced inflammation in HepG2 cells, a human hepatocyte cell line. ST-I4C attenuated the MGO-induced expression of inflammatory-related genes, such as tumor necrosis factor (TNF)-α and IFN-γ by activating nuclear factor-kappa B (NF-κB) without toxicity in HepG2 cells. In addition, ST-I4C reduced the MGO-induced AGE formation and the expression of the receptor for AGE (RAGE). Interestingly, both the mRNA and protein expression levels of Glo-1 increased following ST-I4C treatment, and the decrease in Glo-1 mRNA expression caused by MGO exposure was rescued by ST-I4C pretreatment. These results suggest that ST-I4C shows anti-inflammatory activity against MGO-induced inflammation in human hepatocytes by preventing an increase in the pro-inflammatory gene expression and AGE formation. Therefore, it represents a potential therapeutic agent for the prevention of hepatic steatosis.


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 582 ◽  
Author(s):  
Yuan ◽  
Zhang ◽  
Shen ◽  
Jia ◽  
Xie

Phytosterols, found in many commonly consumed foods, exhibit a broad range of physiological activities including anti-inflammatory effects. In this study, the anti-inflammatory effects of ergosterol, β-sitosterol, stigmasterol, campesterol, and ergosterol acetate were investigated in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Results showed that all phytosterol compounds alleviated the inflammatory reaction in LPS-induced macrophage models; cell phagocytosis, nitric oxide (NO) production, release of tumor necrosis factor-α (TNF-α), and expression and activity of pro-inflammatory mediator cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and phosphorylated extracellular signal-regulated protein kinase (p-ERK) were all inhibited. The anti-inflammatory activity of β-sitosterol was higher than stigmasterol and campesterol, which suggests that phytosterols without a double bond on C-22 and with ethyl on C-24 were more effective. However, inconsistent results were observed upon comparison of ergosterol and ergosterol acetate (hydroxy or ester group on C-3), which suggest that additional research is still needed to ascertain the contribution of structure to their anti-inflammatory effects.


Sign in / Sign up

Export Citation Format

Share Document