EVALUATION OF THE MECHANICAL PROPERTIES OF BAMBUSA BAMBOO LAMINATES THROUGH DESTRUCTIVE TESTING

2018 ◽  
Vol 13 (4) ◽  
pp. 1-18
Author(s):  
Raviduth Ramful

In this research study, Bambusa ssp, the utilized species of bamboo, was rendered into a more versatile construction material in the form of laminates. The laminated specimens were manufactured using simplified processing methods according to the ASTM D3039 and ASTM D143 standards. Polyvinyl acetate was the adhesive used between the 2-ply laminate. The mechanical properties of the specimens were evaluated through tensile, compressive and bending strength tests according to set standards on the Testometric M500-50AT Universal Testing Machine. The tensile strength of laminated bamboo was comparable to that of redwood, spruce, cedar and pine. The ratio of compressive strength of parallel to perpendicular fibers in compressive tests was in a close range to that of poplar, fir and pine. The correlation in compressive strength values between bamboo and wood confirmed the inherent anisotropic nature of both plant materials.

2012 ◽  
Vol 610-613 ◽  
pp. 518-521
Author(s):  
Z.X. Yang ◽  
J.M. Zhao ◽  
Kyu Hong Hwang ◽  
S.J. Shin ◽  
H.R. Lee

To obtain a new type of construction material with lower CO2emission and energy consumption, fly ash was used as the main components. Solution of NaOH/KOH and water glass were applied as alkaline activator. The amount of water glass and the ratio of alkaline/water glass were varied to adjust Si/Al ratio to reach an optimal value. The specimens were cured in air and oven, then their mechanical properties such as compressive strength and bending strength were measured and their microstructures were investigated.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1303
Author(s):  
Michael Seidenstuecker ◽  
Thomas Schmeichel ◽  
Lucas Ritschl ◽  
Johannes Vinke ◽  
Pia Schilling ◽  
...  

This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In addition, the degradation behavior according to ISO EN 10993-14 in TRIS buffer pH 5.0 and pH 7.4 over 60 days was determined, and its effects on the compressive strength were investigated. The loading was carried out by means of a flow-chamber. The weight of the samples (manufacturer: Robert Mathys Foundation (RMS) and Curasan) in TRIS solutions pH 5 and pH 7 increased within 4 h (mean 48 ± 32 mg) and then remained constant over the experimental period of 60 days. The determination surface roughness showed a decrease in the value for the ceramics incubated in TRIS compared to the untreated ceramics. In addition, an increase in protein concentration in solution was determined for ADA gelatin-loaded ceramics. The macroporous Curasan ceramic exhibited a maximum failure load of 29 ± 9.0 N, whereas the value for the microporous RMS ceramic was 931 ± 223 N. Filling the RMS ceramic with ADA gelatin increased the maximum failure load to 1114 ± 300 N. The Curasan ceramics were too fragile for loading. The maximum failure load decreased for the RMS ceramics to 686.55 ± 170 N by incubation in TRIS pH 7.4 and 651 ± 287 N at pH 5.0.


2012 ◽  
Vol 17 (6) ◽  
pp. 154-159 ◽  
Author(s):  
Marcel M. Farret ◽  
Eduardo Martinelli de Lima ◽  
Eduardo Gonçalves Mota ◽  
Hugo Mitsuo S. Oshima ◽  
Gabriela Maguilnik ◽  
...  

OBJECTIVE: To evaluate the mechanical properties of three glass ionomers cements (GICs) used for band cementation in Orthodontics. METHODS: Two conventional glass ionomers (Ketac Cem Easy mix/3M-ESPE and Meron/Voco) and one resin modified glass ionomer (Multi-cure Glass ionomer/3M-Unitek) were selected. For the compressive strength and diametral tensile strength tests, 12 specimens were made of each material. For the microhardness test 15 specimens were made of each material and for the shear bond strength tests 45 bovine permanent incisors were used mounted in a self-cure acrylic resin. Then, band segments with a welded bracket were cemented on the buccal surface of the crowns. For the mechanical tests of compressive and diametral tensile strength and shear bond strength a universal testing machine was used with a crosshead speed of 1,0 mm/min and for the Vickers microhardness analysis tests a Microdurometer was used with 200 g of load during 15 seconds. The results were submitted to statistical analysis through ANOVA complemented by Tukey's test at a significance level of 5%. RESULTS: The results shown that the Multi-Cure Glass Ionomer presented higher diametral tensile strength (p < 0.01) and compressive strength greater than conventional GICs (p = 0.08). Moreover, Ketac Cem showed significant less microhardness (p < 0.01). CONCLUSION: The resin-modified glass ionomer cement showed high mechanical properties, compared to the conventional glass ionomer cements, which had few differences between them.


Author(s):  
S C Sharma

A well-consolidated composite of Al alloy 6061 reinforced with 4, 8 and 12 wt% garnet was prepared by a liquid metallurgy technique, the composite was heat treated for different ageing durations (T6 treatment), and its mechanical properties were determined by destructive testing. The results of the study indicated that, as the garnet particle content in the composites increased, there were marked increases in the ultimate tensile strength, compressive strength and hardness but there was a decrease in the ductility. There was an improvement in the tensile strength, compressive strength, and hardness with ageing due to precipitation. Precipitation in Al alloy 6061, with and without garnet particulate reinforcement, was studied using transmission electron microscopy. The fracture behaviour of the composites was altered significantly by the presence of garnet particles and the crack propagation through the matrix, and the reinforcing particle clusters resulted in final fracture.


Author(s):  
M.A.P Handana ◽  
◽  
Besman Surbakti ◽  
Rahmi Karolina ◽  
◽  
...  

The use of borax solution as a preservative in wood and bamboo materials is well known in the community. A borax solution is an environmentally friendly liquid that can dissolve in water, so it is suitable to be used as a preservative within cold or hot soaking techniques. The ability of borax to resist insects and fungus attacks on bamboo has been proven, but the effect of the solution on the strength of bamboo must also be investigated. This study conducts to investigate the effects of borax and its additives as preservative solutions to the mechanical properties of bamboos. The bamboos preservations were conducted by cold conditions of immersion, while the mechanical properties were performed to understand the effects of preservatives. The result of this study indicated that 30% to 50% borax in the preservative solution is sufficient to provide significant increase in strength for compressive strength, tensile strength, and bending strength of bamboo specimen. From this study, the use of borax solution in preserving the bamboos materials improved the quality of bamboos based on its mechanical properties.


2019 ◽  
Vol 5 (5) ◽  
pp. 1007-1019 ◽  
Author(s):  
Babar Ali ◽  
Liaqat Ali Qureshi ◽  
Ali Raza ◽  
Muhammad Asad Nawaz ◽  
Safi Ur Rehman ◽  
...  

Despite plain cement concrete presenting inferior performance in tension and adverse environmental impacts, it is the most widely used construction material in the world. Consumption of fibers and recycled coarse aggregates (RCA) can add ductility and sustainability to concrete. In this research, two mix series (100%NCA, and 100%RCA) were prepared using four different dosages of GF (0%GF, 0.25%GF, 0.5%GF, and 0.75%GF by volume fraction).  Mechanical properties namely compressive strength, splitting tensile strength, and flexural strength of each concrete mixture was evaluated at the age of 28 days. The results of testing indicated that the addition of GF was very useful in enhancing the split tensile and flexural strength of both RCA and NCA concrete. Compressive strength was not highly sensitive to the addition of GF. The loss in strength that occurred due to the incorporation of RCA was reduced to a large extent upon the inclusion of GF. GF caused significant improvements in the split tensile and flexural strength of RCA concrete. Optimum dosage of GF was determined to be 0.25% for NCA, and 0.5% for RCA concrete respectively, based on the results of combined mechanical performance (MP).


2020 ◽  
Vol 322 ◽  
pp. 01039
Author(s):  
Lais Alves ◽  
Nordine Leklou ◽  
Silvio de Barros

Concrete is a major construction material that produces high levels of carbon dioxide in its manufacturing process. Hence the construction sector is responsible for relevant environmental impacts. This justifies the need to find materials as green and ecological alternatives to common Portland cement. Geopolymers represent the most promising alternative due to its proven durability, mechanical and thermal properties. This study investigates the effects of solid-to-liquid and alkali activator ratios on the synthesis of slag-based pure geopolymer and their relation to the geopolymerization process. Two activating solutions were used: a) a mixture of sodium hydroxide, sodium silicate, and water; and b) a mixture of potassium hydroxide solution, potassium silicate, and water. As precursor material, ground blast furnace slag was used. Precursors and activators were mixed with solid-to-liquid ratios in range of 1.5 to 2.2. In the first stage of the study, the mechanical properties were evaluated for each activating solution. In the following stage, different formulations, with variations in the water percentage and solid-to-liquid ratio were tested for mechanical properties and SEM observations. Test results indicate that the resulting geopolymer has the potential for high compressive strength and is directly affected by the composition of the activating solution. It can also be observed that compressive strength was affected by solid-to-liquid ratio and % of water added to the mixture, and strength increased with ageing day.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Kun Zhang ◽  
Bairu Lu ◽  
Yihong Wang ◽  
Zhijun Lei ◽  
Zhanshen Yang

According to the latest UN statistics, more than 2 billion people in the world still live in various forms of earthen buildings, including some in China. The variety of earth-based constructional materials is significant among different regions, with each region influencing the selection of local earth construction materials. In this study, earth materials from four regions of China were collected and sorted, with 10 samples from each source, and cube compressive strength tests were performed to analyze the composition and mechanical properties of the four materials, including northeast black earth, southeast red earth, northwest loess, and Xinjiang yellow sand earth. The results showed that significant differences existed in the composition of earth-based constructional materials from different regions, which have influence on the materials’ compressive strength. The order from large to small of compressive strengths was loess, black earth, yellow sandy earth, and red earth. Material load-displacement curves were influenced significantly by the plasticity index, but the overall failure processes of the various samples were basically the same.


Author(s):  
Katarzyna CYRAN ◽  
Tomasz TOBOŁA ◽  
Paweł KAMIŃSKI

The paper presents the attempt to find a correlation between the content of impurities and mechanical parameters of rock salt from the LGOM. Research was carried out in three steps: uniaxial compressive strength tests, determination of the content of insoluble minerals (impurities), and observations under the microscope and Raman microspectroscopy. The research results reveal that the rock salt which is characterized by low content of insoluble minerals (0.13–2.11% wt.) shows no correlation between the mechanical properties and the content of impurities. However, it was found that mechanical properties depend on both the distribution of impurities in halite crystals and the presence of fluid inclusions and hydrocarbons along the crystal boundaries. Moreover, the distribution of anhydrite at the edges of halite crystals may influence an increase of rock salt strength. On the contrary, the presence of fluid inclusions and hydrocarbons along the halite crystal boundaries may reduce the rock salt strength.


Author(s):  
Ignatius Omuh ◽  
Rapheal Ojelabi ◽  
Adedeji Afolabi ◽  
Patience Tunji-Olayeni ◽  
Chukwuma Obi ◽  
...  

Water is vital to human existence and life can only be sustained by it. Concrete is a widely used construction material and water is an important part of its composition. Potable water is what is recommended for concrete works, but unfortunately, some places do not have access to this. Places that do not have access to potable water might have access to other water sources that might be used for concrete works. This study was undertaken to investigate the effects of water from different sources on concrete mechanical properties. This study evaluates the characteristics of concrete produced with river water, well water, and potable tap water. Compressive strength and Density, were used to evaluate the characteristics of concrete specimens of mix ratios 1:2:4 and 1: 1 1/2 :3 produced with water from the different sources. The results showed that concrete specimens produced with tap water had the highest mean compressive strength at 28 days. While well water had the lowest compressive strength, it was concluded that well water was not suitable for concrete works even though it is already being used on some sites that can’t access tap water.


Sign in / Sign up

Export Citation Format

Share Document