Perspectives of Hydrothermal Synthesis of Fluorides for Luminescence Applications

Author(s):  
Nilesh. S. Ugemuge ◽  
Chhatrasal Gayner ◽  
V. Natrajan ◽  
Sanjay. J. Dhoble

Hydrothermal synthesis is an easy, portable, less-hazardous, and low-cost synthesis method. Various researchers across the globe are worked on the synthesis of different materials via this route. Practically, fluorides are difficult to synthesize due to their hygroscopic nature by conventional methods. But, the hydrothermal synthesis is used to prepare several compositionally optimized fluoride-based materials using closed-system physical and chemical processes in an aqueous solution at low temperatures and pressures. The silent features of the hydrothermal method over conventional methods of materials processing are a crystallization of materials, crystal growth, in the processing of a wide range of materials not only the bulk crystals but fine particles with a controlled size and morphology. Therefore, in order to place its numerous recent developments, past and current research come together in this chapter. This chapter is a recent clocking update for synthesis, materials, and their applications.

2020 ◽  
Vol 18 (1) ◽  
pp. 1148-1166
Author(s):  
Ganjar Fadillah ◽  
Septian Perwira Yudha ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Oki Muraza

AbstractPhysical and chemical methods have been developed for water and wastewater treatments. Adsorption is an attractive method due to its simplicity and low cost, and it has been widely employed in industrial treatment. In advanced schemes, chemical oxidation and photocatalytic oxidation have been recognized as effective methods for wastewater-containing organic compounds. The use of magnetic iron oxide in these methods has received much attention. Magnetic iron oxide nanocomposite adsorbents have been recognized as favorable materials due to their stability, high adsorption capacities, and recoverability, compared to conventional sorbents. Magnetic iron oxide nanocomposites have also been reported to be effective in photocatalytic and chemical oxidation processes. The current review has presented recent developments in techniques using magnetic iron oxide nanocomposites for water treatment applications. The review highlights the synthesis method and compares modifications for adsorbent, photocatalytic oxidation, and chemical oxidation processes. Future prospects for the use of nanocomposites have been presented.


NANO ◽  
2017 ◽  
Vol 12 (04) ◽  
pp. 1750043 ◽  
Author(s):  
Muhammad Rafique ◽  
Ahson J. Shaikh ◽  
Reena Rasheed ◽  
Muhammad Bilal Tahir ◽  
Hafiz Faiq Bakhat ◽  
...  

To address accosts of this modern age, the synthesis of metal nanoparticles is more important than ever. Copper has been recognized as a nontoxic, safe inorganic material, cheaper antibacterial/antifungal agent, and has high potential in a wide range of biological, catalytic and sensors applications more particularly in the form of nanoparticles. This resulted in the development of numerous methods for the synthesis of copper nanoparticles. As conventional methods like chemical and physical methods have several limitations so there is need to an alternate method. Due to nontoxic and eco-friendly nature, it has recently been shifted toward green synthesis of copper nanoparticles over conventional methods. Additionally, characterization of the synthesized nanoparticles is essential for their use in various applications. This review gives an overview of environment friendly synthesis method of copper nanoparticles and their applications on the basis of their potential selectivity and preferences in a number of fields like material sciences and biomedicine.


2013 ◽  
Vol 423-426 ◽  
pp. 550-553 ◽  
Author(s):  
Bing Jiang ◽  
Wen Qin Wang ◽  
Yu Song Liu ◽  
Zhi Meng Guo

FePO4·2H2O with orthorhombic flower-like microstructure was synthesized by a facile hydrothermal process which was of low-cost and easy processing in large area. The formation mechanism of the flower-like FePO4·2H2O was discussed in details by investigating the different concentration of reactants and reaction time. The results show that the morphology of FePO4·2H2O changed from microsphere to flower-like structure, which possess an unique morphology with six petals and the angle of each petal being 60o. The formation mechanism of FePO4·2H2O flowers can be explained by the dissolution-recrystallization and crystal splitting.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiao-Guang Gao ◽  
Ling-Xiao Cheng ◽  
Wen-Shuai Jiang ◽  
Xiao-Kuan Li ◽  
Fei Xing

Being the first successfully prepared two-dimensional material, graphene has attracted extensive attention from researchers due to its excellent properties and extremely wide range of applications. In particular, graphene and its derivatives have displayed several ideal properties, including broadband light absorption, ability to quench fluorescence, excellent biocompatibility, and strong polarization-dependent effects, thus emerging as one of the most popular platforms for optical sensors. Graphene and its derivatives-based optical sensors have numerous advantages, such as high sensitivity, low-cost, fast response time, and small dimensions. In this review, recent developments in graphene and its derivatives-based optical sensors are summarized, covering aspects related to fluorescence, graphene-based substrates for surface-enhanced Raman scattering (SERS), optical fiber biological sensors, and other kinds of graphene-based optical sensors. Various sensing applications, such as single-cell detection, cancer diagnosis, protein, and DNA sensing, are introduced and discussed systematically. Finally, a summary and roadmap of current and future trends are presented in order to provide a prospect for the development of graphene and its derivatives-based optical sensors.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jianfei Xi ◽  
Guoqing Yang ◽  
Jie Cai ◽  
Zhongzhu Gu

As a product generated from incomplete combustion, soot is harmful to people’s health and the environment. In recent decades, much attention has been paid to the control of soot generation in combustion systems. Efforts to reduce soot emissions depend on a basic understanding of the physical and chemical pathways from fuel to soot particles in flames. At the same time, flame synthesis method has become an alternative method for the preparation of carbon nanomaterials because of its advantages of low cost and mass production. Carbon-based materials can be synthesized within the sooting zones in flames. The research of soot formation mechanism in flames can provide support for the synthesis of carbon nanomaterials. In this paper, the effects of additives, temperature, and fuel type on soot formation characteristics and soot nanostructure in diffusion flames are reviewed. The deficiencies and prospects are put forward for future research.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yunhui Bao ◽  
Jian He ◽  
Ke Song ◽  
Jie Guo ◽  
Xianwu Zhou ◽  
...  

Metal nanoparticles (MNPs) have been widely used in several fields including catalysis, bioengineering, photoelectricity, antibacterial, anticancer, and medical imaging due to their unique physical and chemical properties. In the traditional synthesis method of MNPs, toxic chemicals are generally used as reducing agents and stabilizing agents, which is fussy to operate and extremely environment unfriendly. Based on this, the development of an environment-friendly synthesis method of MNPs has recently attracted great attention. The use of plant extracts as reductants and stabilizers to synthesize MNPs has the advantages of low cost, environmental friendliness, sustainability, and ease of operation. Besides, the as-synthesized MNPs are nontoxic, more stable, and more uniform in size than the counterparts prepared by the traditional method. Thus, green preparation methods have become a research hotspot in the field of MNPs synthesis. In this review, recent advances in green synthesis of MNPs using plant extracts as reductants and stabilizers have been systematically summarized. In addition, the insights into the potential applications and future development for MNPs prepared by using plant extracts have been provided.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 766 ◽  
Author(s):  
Yeşeren Saylan ◽  
Adil Denizli

Fast progress has been witnessed in the field of microfluidic systems and allowed outstanding approaches to portable, disposable, low-cost, and easy-to-operate platforms especially for monitoring health status and point-of-care applications. For this purpose, molecularly imprinted polymer (MIP)-based microfluidics systems can be synthesized using desired templates to create specific and selective cavities for interaction. This technique guarantees a wide range of versatility to imprint diverse sets of biomolecules with different structures, sizes, and physical and chemical features. Owing to their physical and chemical robustness, cost-friendliness, high stability, and reusability, MIP-based microfluidics systems have become very attractive modalities. This review is structured according to the principles of MIPs and microfluidic systems, the integration of MIPs with microfluidic systems, the latest strategies and uses for point-of-care applications and, finally, conclusions and future perspectives.


2021 ◽  
Vol 6 (1) ◽  
pp. 21
Author(s):  
Federico Bruno ◽  
Alice Sciortino ◽  
Gianpiero Buscarino ◽  
Marco Cannas ◽  
Franco Mario Gelardi ◽  
...  

Carbon nanodots (CDs) are a new class of fluorescent carbon-based nanomaterials characterized by a plethora of morphologies and sizes. Among these, we can include two different types of CDs, namely, graphitic and diamond-like. This wide range of structures opens up the possibility to design different CDs, with tunable optical properties accordingly to the synthesis method and precursors used. We prepared two different CDs following a bottom-up approach by thermally induced decomposition of organic precursors (namely, citric acid and urea in different molar ratios), and using purification by Size Exclusion Chromatography (SEC). Obtained CDs were characterized by Raman, absorption and fluorescence (PL) spectroscopies to understand structural and optical properties, and by atomic force microscopy (AFM) to elucidate morphology. They feature graphitic and diamond-like carbon structures with highly efficient visible emissions. Their sensing towards Cd and Hg heavy metals has been tested by PL experiments. We found a PL quenching in the presence of concentrations of metal salts starting from 0.5 μM and a selectivity towards the interacting ions, depending on the CDs structure, enabling using them for sensing. Furthermore, preliminary experiments suggest that these dots can also be used in principle as sensors of common pesticides. Considering the advantages of carbon dots with respect to other nanomaterials, such as non-toxicity, low cost and ease of synthesis, we consider these results to be very promising in view of exploiting the optical response of carbon dots to fabricate in the near future a variety of pollutant-sensing devices.


2003 ◽  
Vol 34 (10) ◽  
pp. 7-9 ◽  

Recent developments in micro electromechanical systems (MEMS) point towards a wide range of applications for a new breed of integrated wireless sensors. Applications include embedded sensors in “smart” buildings, for example vibration and temperature monitoring, medical implants and remote sensing. The new devices, which will communicate by microwatt power, short range radio (picoradio), have been compared with communicating neurons. The vision is that hundreds, or even thousands of small independent, low cost devices will be built into, say, a building, producing a powerful, interlinked network of information transmission. But they require a long- term power source, which can be a significant problem. The limitations of batteries have led to interest in scavenging by conversion of another form into electrical energy. Possible energy sources are solar, body functions such as breathing, natural temperature gradients etc. This article considers energy scavenging from vibration.


2017 ◽  
Vol 744 ◽  
pp. 493-497 ◽  
Author(s):  
Pan Pan Sun ◽  
Shu Zhong Wang ◽  
Yan Hui Li ◽  
Tuo Zhang

Supercritical hydrothermal synthesis is a green synthesis method for metal and metal oxide ultra-fine particles. Ultra-fine copper particles are of great interests for the researchers because of the excellent performance in recent years. In this paper, supercritical hydrothermal synthesis of copper ultra-fine particles with three different precursors (CuSO4, Cu(NO3)2, Cu(HCOO)2) are reported. This thesis reports that different products are produced with different precursors. Also, three kinds of reaction mechanisms with different precursors in supercritical water were explained. The conversion of copper ions in the reaction of Cu(HCOO)2 in supercritical water is the highest, the value reaches 100.0%. In the process of synthesizing ultra-fine copper particles, different additional HCOOH concentrations (0, 0.1 mol/L, 0.2 mol/L) and different reaction times (5 mins, 10 mins) were applied. Zero-valent ultra-fine copper particles without impurity were synthesized. The synthesized copper ultra-fine particles were cubic aggregations with micro-meter size


Sign in / Sign up

Export Citation Format

Share Document