Starch Cellulosic Bio-Composites

Author(s):  
M. J. Halimatul ◽  
S. M. Sapuan ◽  
N. Julkapli ◽  
M. Jawaid ◽  
M. R. Ishak ◽  
...  

This review discusses the effect of nanocellulose or lignocellulosic fibers introduced in starch films. A concise comparison in the mechanical and water absorption properties of the nanocellulose-reinforced starch originated from different plant species was made. It was found that most of these studies prefer solution casting as popular fabrication technique. Studies found nanocellulose generates positive results on mechanical and water uptake properties. The increment in tensile strength was reported between 1.08 to slightly higher than 2-fold while water uptake was decreased between 1.14 to 1.19-fold. In addition, the fibers also serves well as a reinforcement material for starch matric although not as competent as nanocellulose. Discussion on improvement in mechanical, water uptake, thermal, and biodegradation of lignocellulosic fiber-reinforced starch was presented in this chapter. This review also emphasizes potential uses of nanocellulose reinforced starch composite as a smart food packaging and bio-carrier in bio-delivery system where it contributes considerably to a better life.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1146
Author(s):  
Zuzanna Żołek-Tryznowska ◽  
Alicja Kałuża

Starch films can be used as materials for food packaging purposes. The goal of this study is to compare how the starch origin influence the selected starch film properties. The films were made from various starches such as that from maize, potato, oat, rice, and tapioca using 50%w of glycerine as a plasticizer. The obtained starch-based films were made using the well-known casting method from a starch solution in water. The properties of the films that were evaluated were tensile strength, water vapour transition rate, moisture content, wettability, and their surface free energy. Surface free energy (SFE) and its polar and dispersive components were calculated using the Owens-Wendt-Rabel-Kaelbe approach. The values of SFE in the range of 51.64 to 70.81 mJ∙m−2 for the oat starch-based film and the maize starch-based film. The films revealed worse mechanical properties than those of conventional plastics for packaging purposes. The results indicated that the poorest tensile strength was exhibited by the starch-based films made from oat (0.36 MPa) and tapioca (0.78 MPa) and the greatest tensile strength (1.49 MPa) from potato.


2016 ◽  
Vol 869 ◽  
pp. 361-365 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Noan Tonini Simonassi ◽  
Rômulo Leite Loiola ◽  
Michel Picanço Oliveira

In recent years natural fibers, especially those lignocellulosic extracted from plants, have gained attention owing to their engineering performance as polymer composite reinforcement. It was found that some of these lignocellulosic fibers, such as the curaua, ramie and sisal may reach tensile strength above 1000 MPa in association with very thin diameters. Therefore. the objective of the present work was to fabricate polyester matrix composites with the highest tensile strength possible, by reinforcing with the thinnest continuous and aligned curaua fibers. Tensile tests results of composites reinforced with 30% volume of these thinnest curaua fibers showed a tensile strength of 135 MPa, which corresponds to one of the highest strength attained for lignocellulosic fiber composites.


2014 ◽  
Vol 6 (1) ◽  
pp. 27 ◽  
Author(s):  
Desi Mustika Amaliyah

Durian (Durio zibethinus) and cempedak (Artocarpus integer) peels waste are not used by the society. The research aim is to extract pectin from durian and cempedak peels and to formulate the pectin into edible films for food packaging. The research stages were first pre-treatment of durian and cempedak peels, pectin extraction, pectin drying, and  pectin application as edible films with concentration of 0%, 5%, and 15%. Based on this research it was concluded that pectin can be extracted from durian and cempedak peels with yield result of 27.97 % and 55.58 %, respectively. Edible film obtained has  similar characteristics between raw materials cempedak and durian peels. The higher concentration of cempedak peel  pectin increased the thickness, but decreased the tensile strength and elongation at a concentration of 15%. While in edible films from durian peel pectin, the higher concentration of pectin decreased the thickness of edible film on pectin concentration of 15%, lowered tensile strength and raised the edible film elongation.Keywords: waste, durian, cempedak, pectin extraction, edible film


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1064
Author(s):  
Mohd Nor Faiz Norrrahim ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Mohd Ali Hassan ◽  
Nor Azowa Ibrahim ◽  
...  

Residual hemicellulose could enhance cellulose nanofiber (CNF) processing as it impedes the agglomeration of the nanocellulose fibrils and contributes to complete nanofibrillation within a shorter period of time. Its effect on CNF performance as a reinforcement material is unclear, and hence this study seeks to evaluate the performance of CNF in the presence of amorphous hemicellulose as a reinforcement material in a polypropylene (PP) nanocomposite. Two types of CNF were prepared: SHS-CNF, which contained about 11% hemicellulose, and KOH-CNF, with complete hemicellulose removal. Mechanical properties of the PP/SHS-CNF and PP/KOH-CNF showed an almost similar increment in tensile strength (31% and 32%) and flexural strength (28% and 29%) when 3 wt.% of CNF was incorporated in PP, indicating that hemicellulose in SHS-CNF did not affect the mechanical properties of the PP nanocomposite. The crystallinity of both PP/SHS-CNF and PP/KOH-CNF nanocomposites showed an almost similar value at 55–56%. A slight decrement in thermal stability was seen, whereby the decomposition temperature at 10% weight loss (Td10%) of PP/SHS-CNF was 6 °C lower at 381 °C compared to 387 °C for PP/KOH-CNF, which can be explained by the degradation of thermally unstable hemicellulose. The results from this study showed that the presence of some portion of hemicellulose in CNF did not affect the CNF properties, suggesting that complete hemicellulose removal may not be necessary for the preparation of CNF to be used as a reinforcement material in nanocomposites. This will lead to less harsh pretreatment for CNF preparation and, hence, a more sustainable nanocomposite can be produced.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Olugbenga O. Oluwasina ◽  
Bolaji P. Akinyele ◽  
Sunday J. Olusegun ◽  
Olayinka O. Oluwasina ◽  
Nelcy D. S. Mohallem

AbstractThe adverse environmental effects of petroleum-based packaging plastics have necessitated the need for eco-friendly bioplastics. Most bioplastics are starch-based and are not without drawbacks, hence there is the need for their properties to be improved. In this study, the effect of varying concentrations of dialdehyde starch and silica solutions on the physical, mechanical, biodegradable, surface topology, and thermal properties of the bioplastic films was examined. The additive concentrations were varied from 60 to 100%. The bioplastic films produced with dialdehyde starch solution recorded better moisture content (6.62–11.85%), bioplastic film solubility (4.23–7.90%), and tensile strength (1.63–3.06 MPa), against (11.24–14.26%), (7.77–19.27%) and (0.53–0.73 MPa) respectively for bioplastic films produced with silica solution. The atomic force microscopy analysis; root-mean-square roughness, kurtosis, and skewness revealed better miscibility and compatibility between the starch matrix and the dialdehyde solution than between the starch matrix and the silica solution. Bioplastic with added dialdehyde starch solution has better tensile strength and long biodegradability than that with silica solution. The research has demonstrated that bioplastic film produced with starch and dialdehyde starch solution has better properties than the one produced with starch and silica solution. The properties evaluation results of the bioplastic films thus demonstrated their aptness for food packaging applications. Graphic abstract


2021 ◽  
pp. 004051752110154
Author(s):  
Zhihui Qin ◽  
Shuyuan Zhao ◽  
Liu Liu ◽  
Zhaohe Shi ◽  
Longdi Cheng ◽  
...  

Degumming is the dominant method for insolating lignocellulosic fibers in textile applications. Traditional alkaline degumming (TAL), as a common method, requires a high-concentration alkali and has been a severe challenge to the environment. In the research reported here, the possibility of innovative jute degumming by organic solvents 1-2 propylene glycol and a combination of additive green oxygen (GO-OS) was studied. The results revealed that fibers could be extracted by this system (under condition of 0.9% GO-OS, 180°C, 120 min), and obtained fibers with higher breaking tenacity (7.1 cN/dtex), yield (65.7%), breaking elongation (2.87%) and residual gum (11.7%), which all meet the requirement of the relevant Chinese Textile National Standards. Notably, the required reaction time (120 min) of the GO-OS system was 180 min shorter than that of the TAL method. Furthermore, the modifications introduced by the degumming effect on physicochemical aspects were characterized and confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. This study provides a promising degumming method for separating jute lignocellulose without acid and alkali consumption.


2014 ◽  
Vol 775-776 ◽  
pp. 308-313 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Lucas Barboza de Souza Martins ◽  
Rômulo Leite Loiola ◽  
Michel Picanço Oliveira

Fibers of the giant bamboo (Dendrocalmus giganteus) are amongst the strongest lignocellulosic fibers. Although studies have been already performed, limited information exists on the mechanical properties of polymeric composites reinforced with continuous and aligned giant bamboo fibers. This work evaluates the tensile strength of this type of composite. Standard tensile specimens were fabricated with up to 30% of fibers aligned along the specimen length. The fibers were press-molded with a commercial polyester resin mixed with a hardener and cured for 24 hours at room temperature. The specimens were tensile tested in an Instron machine and the fracture surface analyzed by scanning electron microscopy. The tensile strength increased significantly with the amount of giant bamboo fiber reinforcing the composite. This performance can be associated with the difficult of rupture imposed by the fibers as well as with the type of cracks resulting from the bamboo fiber/polyester matrix interaction, which prevents rupture to occur.


2019 ◽  
Vol 25 (4) ◽  
pp. 506-514 ◽  
Author(s):  
Himanshu Gupta ◽  
Harish Kumar ◽  
Mohit Kumar ◽  
Avneesh Kumar Gehlaut ◽  
Ankur Gaur ◽  
...  

The current study stresses on the reuse of waste lignocellulose biomass (rice husk and sugarcane bagasse) for the synthesis of carboxymethyl cellulose (CMC) and further conversion of this CMC into a biodegradable film. Addition of commercial starch was done to form biodegradable film due to its capacity to form a continuous matrix. Plasticizers such as Glycerol and citric acid were used to provide flexibility and strength to the film. Biopolymer film obtained from sugarcane bagasse CMC showed maximum tensile strength and elongation in comparison to the film synthesized from commercial CMC and CMC obtained from rice husk. It has been observed that an increase in sodium glycolate/NaCl content in CMC imposed an adverse effect on tensile strength. Opacity, moisture content, and solubility of the film increased with a rise in the degree of substitution of CMC. Therefore, CMC obtained from sugarcane bagasse was better candidate in preparing biopolymer/biocomposite film.


In this study, intelligent food packaging in the forms of film and coating were developed based on starch, chitosan and curcumin extracted from turmeric. Solution casting method was applied to develop the film. Both of the film and coating were evaluated and compared by their chemical, physical and biological properties. The film was evaluated in terms of tensile strength measurement, FTIR spectroscopy, antioxidant activity and antimicrobial activity as well as color difference parameters after application on the strawberry. The results obtained showed that the film has a tensile strength of 1.37 MPa, elongation at break of 18.9%, antioxidant activity of 95.65% and high antimicrobial activity as the film had successfully delayed the formation of mould on the strawberry after 5 days of storage. In addition, the stability of both film and coating were evaluated based on their applications on strawberries at two different conditions which are at room temperature and chiller temperature during 5 days storage to identify their potential use as intelligent food packaging. After 5 days, it was found that the film at room temperature had been partially degraded and the coating had caused colour degradation and texture deterioration of the strawberry. In contrast, the film and coating stored at chiller temperature remained the same in terms of physical structure and able to monitor and extend the shelf life of the strawberry. For the evaluation of the film as pH sensing film, the colour of the film changed after 5 days from 53.46 to 48.92 for L*, 26.01 to 22.68 for a* and 42.49 to 44.65 for b* at chiller temperature, while at room temperature, the values of L* changed from 53.96 to 48.96, 25.54 to 20.36 for a* and 46.34 to 44.10 for b*. These showed that the film was able to monitor the freshness of the strawberry by changing its colour in respond to pH changes of the strawberry. The results obtained revealed that both of the film and coating have a greater stability at chiller temperature as compared to storage at room temperature and both have a strong antioxidant activity and strong antimicrobial activity that they delayed the spoilage of the strawberries. Therefore, the film and coating based on starch, chitosan and curcumin can be used to monitor freshness of refrigerated food and have the potential to be used as intelligent food packaging


2019 ◽  
pp. 089270571986827 ◽  
Author(s):  
Mehrnoush Monshizadeh ◽  
Sajad Seifi ◽  
Iman Hejazi ◽  
Javad Seyfi ◽  
Hossein Ali Khonakdar

Synergistic effects of organo-modified Mg-Al layered double hydroxide (LDH) and triethyl citrate (TEC) on the properties of poly(lactic acid) (PLA) were demonstrated. PLA/LDH nanocomposites in the absence and presence of TEC were fabricated via solution casting technique. Morphological analysis revealed that as the LDH concentration increases, the number of aggregations is also increased; however, introduction of TEC considerably enhanced the dispersion quality of LDHs. Differential scanning calorimetry results showed that the addition of LDH and TEC had no significant influence on the crystallinity of nanocomposites obtained from solution casting. In contrast, once the samples were cooled from melt, the concurrent use of LDH and TEC led to a dramatic enhancement in the crystallinity of PLA ( X c = 55.5%). Moreover, the LDH nanoparticles counterbalanced the adverse effects of plasticization by TEC leading to enhanced toughness of the final nanocomposites. LDH had also a positive influence on thermal stability of PLA, indicating the heat-insulating role of LDH particles. In conclusion, the concurrent use of LDH and TEC could extend the applicability of PLA especially in food packaging applications.


Sign in / Sign up

Export Citation Format

Share Document