scholarly journals A Study Surface Layer and Hardness Produced by Induction Hardened S45C Steel

2014 ◽  
Vol 664 ◽  
pp. 43-47 ◽  
Author(s):  
Alain Kusmoko ◽  
Rosfian Arsyah Dahar ◽  
Hui Jun Li ◽  
Syamsul Hadi

A cylinder of Carbon Steel S45C with a ferrite and pearlite structure was analysed to improve the hardness and surface layer as well as the toughness. Accordingly, it is important to undertake a heat treatment process for the hardness and surface layer of this steel. The heat teatment process was carried out using induction heating with five different temperatures of 800°C, 900°C, 1000°C, 1100°C and 1200 °C followed by water quenching with certain cooling speed. The chemical compositions and microstructures of these samples were characterized by spectrometer and optical microscopy. The microhardness of the samples was measured and the surface treatment of the samples was examined using an induction heating furnace. The results showed significant case depth and surface hardness as well as microstructure with martensite and retained austenite that is hard and brittle because of internal stress. Further, to reduce the amount of retained austenite and internal stress, it is necessary to carry out tempering of 300°C, 500°C and 700°C in order to produce toughness of the steel with slightly reduce in hardness.

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 812
Author(s):  
Mihály Réger ◽  
Richárd Horváth ◽  
Attila Széll ◽  
Tamás Réti ◽  
Viktor Gonda ◽  
...  

The aim of this study is to exhibit the mutual connection between surface and in depth hardness values in the case of surface-treated metal samples with inhomogeneous hardness distribution in the surface layer. The reason for surface treatments of metal alloys is most commonly to increase the hardness and wear resistance at the surface. Case depth, as a result of surface treatment and the in-depth hardness distribution, can be determined by measuring the hardness of a section perpendicular to the treated surface and by metallographic examination. The result of heat treatment can also be checked rapidly by surface hardness testing. Surface hardness carries only indirect information regarding case depth and hardness distribution. Surface and cross-sectional hardness can be related to the mathematical modeling of the plastic zone developing in the indentation process. The mathematical model applied in this study allows the conversion of the surface hardness function into the in-depth hardness function and vice-versa. The calculation method presented was validated by analyzing the hardness data of nitrocarburized samples of various case depths. The validation result proves that cross-sectional hardness distribution can be adequately estimated by surface hardness data in the case of a surface layer with monotonically decreasing hardness distribution.


2014 ◽  
Vol 599 ◽  
pp. 178-181 ◽  
Author(s):  
Hong Hua Zhang ◽  
Pei Qiang Cui ◽  
Liu Jing Zi Qiu ◽  
Shao Peng Wu

Volatile organic compounds (VOC) emission from different asphalts not only causes the change in the performances of the bitumen, but also its chemical compositions. This paper carried out four-component analysis to study the influence of VOC emission from different asphalts on bitumens chemical compositions under different conditions. Results show that four-component of asphalts from different places is different. Also as the time of VOC emission increases, the total contents of resins and asphaltenes increase, but the total contents of saturates and aromatics decrease. VOC emission under different temperatures also has a great impact on the asphalt chemical components; Saturates and aromatics decrease in high temperature is larger than in low temperature, and there exists big differences in the asphalt surface layer and the internal of chemical components.


2021 ◽  
Vol 11 (6) ◽  
pp. 2691
Author(s):  
Nataša Ćuković Ignjatović ◽  
Ana Vranješ ◽  
Dušan Ignjatović ◽  
Dejan Milenić ◽  
Olivera Krunić

The study presented in this paper assessed the multidisciplinary approach of geothermal potential in the area of the most southeastern part of the Pannonian basin, focused on resources utilization. This study aims to present a method for the cascade use of geothermal energy as a source of thermal energy for space heating and cooling and as a resource for balneological purposes. Two particular sites were selected—one in a natural environment; the other within a small settlement. Geothermal resources come from different types of reservoirs having different temperatures and chemical compositions. At the first site, a geothermal spring with a temperature of 20.5 °C is considered for heat pump utilization, while at the second site, a geothermal well with a temperature of 54 °C is suitable for direct use. The calculated thermal power, which can be obtained from geothermal energy is in the range of 300 to 950 kW. The development concept was proposed with an architectural design to enable sustainable energy efficient development of wellness and spa/medical facilities that can be supported by local authorities. The resulting energy heating needs for different scenarios were 16–105 kW, which can be met in full by the use of geothermal energy.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 567
Author(s):  
Paulina Kowalczyk ◽  
Konrad Dybowski ◽  
Bartłomiej Januszewicz ◽  
Radomir Atraszkiewicz ◽  
Marcin Makówka

This paper presents the concept of modification of physicochemical properties of steels by simultaneous diffusion saturation with carbon and chromium or aluminum. The application of a hybrid surface treatment process consisting of a combination of aluminizing and low-pressure carburizing (Al + LPC) resulted in a reduction in the amount of retained austenite in the surface layer of the steel. While the use of chromium plating and low-pressure carburizing (Cr + LPC) induced an improvement in the corrosion resistance of the carburized steels. It is of particular importance in case of vacuum processes after the application of which the active surface corrodes easily, as well as in case of carburizing of low-alloy steel with nickel, where an increased content of retained austenite in the surface layer is found after carburizing.


2021 ◽  
Vol 316 ◽  
pp. 794-802
Author(s):  
Andrey E. Balanovsky ◽  
Van Trieu Nguyen

The Purpose of paper is to conduct studies to assess the possibility of increasing the hardness of the surface layer of steel St3 grade by plasma heating of the applied surface coating containing powder alloy PR-N80X13S2R. Mixtures of pasta were divided into 2 groups: for furnace chemical-thermal treatment and plasma surface melting. The study of the microstructure showed a difference in the depth of the saturated layer, depending on the processing method, during chemical-thermal treatment-1 mm, plasma fusion - 2 mm. The results of measuring the surface micro-hardness showed that, the obtained coating from a mixture of PR-N80X13S2R + Cr2O3 + NH4Cl has a uniform high surface hardness (31-64 HRC), from a mixture of only PR-N80X13S2R - the surface hardness varies in a wide range (15-60 HRC). The study of the microhardness of the cross section of the surface layer showed that, the diffusion region: from a mixture of powder PR-N80X13S2R + Cr2O3 + NH4Cl has uniform hardness (450-490 HV); from a mixture of PR-N80X13S2R - hardness increases in the depth of the molten region (from 300 to 600 HV), and sharply decreases in the heat affected zone (210-170 HV). The use of PR-N80X13S2R alloy powder as the main component in the composition of the paste deposited on the St3 surface during plasma treatment leads to the formation of a doped surface layer with high hardness.


2021 ◽  
Author(s):  
Larissa Vilela Costa ◽  
Vincent Lelong ◽  
Dennis Beauchesne ◽  
Robert L. Cryderman ◽  
Kip O. Findley

Abstract Low pressure carbonitriding and pressurized gas quenching heat treatments were conducted on four steel alloys. Bending fatigue tests were performed, and the highest endurance limit was attained by 20MnCr5+B, followed by 20MnCr5, SAE 8620+Nb, and SAE 8620. The differences in fatigue endurance limit occurred despite similar case depths and surface hardness between alloys. Low magnitude tensile residual stresses were measured near the surface in all conditions. Additionally, nonmartensitic transformation products (NMTPs) were observed to various extents near the surface. However, there were no differences in retained austenite profiles, and retained austenite was mostly stable against deformation-induced transformation to martensite during fatigue testing, contrasting some studies on carburized steels. The results suggest that the observed difference in fatigue lives is due to differences in chemical composition and prior austenite grain size. Alloys containing B and Nb had refined prior austenite grain sizes compared to their counterparts in each alloy class.


2021 ◽  
Vol 1016 ◽  
pp. 636-641
Author(s):  
Hana Jirková ◽  
Jiří Vrtáček ◽  
Michal Peković ◽  
Tomáš Janda ◽  
Ludmila Kučerová

Press-hardening is an intensively developing forming technology which is mainly used for the production of car body parts. Because it is a hot forming technology, small forming forces can be utilized and, due to the lower spring-back effect, more accurate products are achieved. In car bodies, materials with high energy absorption and a sufficient hardening coefficient are mainly used in impacted parts. One of these materials is TRIP multiphase steels with different chemical composition. In these steels, it is possible to achieve an ultimate strength up to 1000 MPa with the ductility of 20-30%. In order to achieve the desired properties, it is necessary to select a suitable heat treatment that allows to achieve a multiphase structure. Phase transformations and mechanical properties are influenced by the use of suitable alloying elements. Three low-alloy, multiphase TRIP steels with different chemical compositions with a carbon content of 0.2% were chosen for the experimental program. The first steel was alloyed only with manganese and silicon, in the second niobium was added, and in the third the influence of chromium on increase of hardenability and strength was investigated. Press-hardening was performed in a heated forming tool. To describe the effect of the cooling rate, the forming was carried out in a tool at room temperature and after preheating to 425°C. The influence of holding time in the tool at 425°C to support the formation of bainite and retained austenite stabilization was also investigated. Mixed ferritic-bainitic-martensitic structures with some retained austenite content were obtained.


1983 ◽  
Vol 4 ◽  
pp. 158-162 ◽  
Author(s):  
T. E. Lang ◽  
J. D. Dent

Experiments on the behavior of the active granular layer between flowing snow and sintered basal snow were performed by laboratory simulation of the layer. Layer thickness, its velocity profile, kinematic viscosity, and shear locking stress were estimated fron low-velocity tests. Variation in these parameters over a temperature range from -5 to -18°C, for overburden pressures of 1180 and 2360 N m−2, and for surface hardness in the range 0.4 to 4.0 N m−2 were evaluated. Results show strong dependence between surface hardness and layer viscosity, and near linear dependence between shear locking stress and overburden pressures.


Sign in / Sign up

Export Citation Format

Share Document