Research on Effect of Cr3C2 Addition on Microstructure and Mechanical Properties of Ti(C,N)-Based Cermets

2014 ◽  
Vol 697 ◽  
pp. 46-50
Author(s):  
Hai Long Wei ◽  
Hai Yan Lei ◽  
Guo Xiong Zhong ◽  
Hai Zhou Yu ◽  
Ping Feng

Four Ti (C,N)-based cermets with Cr3C2 content of 0.3%, 0.6%, 0.9% and 1.2 % in mass ratio were sintered in vacuum at 1430oC, 1450oC, 1465oC and 1480oC. The mechanical properties of the specimens were determinted and microstructures were observed using the scanning electron microscope (SEM) to study the effect of Cr3C2 content on mechanical properties and microstructure. The results show that the four Ti (C,N)-based cermets sintered at 1465oC have the best overall mechanical properties; and among them, the cermet with 0.6% Cr3C2 has the best overall mechanical properties, i.e. transverse rupture strength (TRS) 1967MPa, hardness 1556HV and fracture toughness (KIC) 9.5MPa.m1/2. With the increase of Cr3C2 content, the black core volume fraction firstly increases and then decreases, the white core decreases in a progressive and continuous manner, the rim phase firstly increases and then decreases, the binder phase firstly decreases and then increases.

2011 ◽  
Vol 284-286 ◽  
pp. 314-317
Author(s):  
Ping Feng ◽  
Xiao Ming Zhang ◽  
Song Jin ◽  
Teng Biao Zheng

Element Mo plays a significant role in Ti(C,N)-based cermets. In this work, mixing was carried out in water and cermets with high mechanical properties were fabricated. The effect of Mo2C content on microstructure and composition was investigated by field emission scanning electron microscope (FSEM) and energy dispersive spectrometer (EDS). Results showed that microstructure becomes uniformly distributed, binder distribution becomes symmetrical and the particle size becomes small with increase of Mo2C content. The volume fraction of (outer + inner) rim structure increases, the volume fractions of core structure and binder phase decrease instead. It was found that Mo2C content in raw material affects compositions in phases. With the level of Mo2C content rising, the concentration of element Mo in rim structure increases, the concentration of element Ti in binder decreases.


2020 ◽  
Vol 837 ◽  
pp. 139-145
Author(s):  
Ai Jun Liu ◽  
Gang Li ◽  
Ning Liu ◽  
Ke Bei Chen ◽  
Hai Dong Yang

Effect of Ti (C,N) based cermets granule on the microstructure, mechanical properties, sintering and fracture behavior of Ti (C,N) based cermets was investigated. Results show that the Ti (C,N) based cermets granules distribute in the matrix homogeneously. A nanoindentation study was performed on hard phase and binder phase in the matrix and granule. With the increase of granules content, sintering properties is worse. With the increase of granules content, transverse rupture strength (TRS) and relative density decrease gradually, while the hardness has an opposite trend. The fracture toughness increases firstly with increasing granule, and then decreases with the further increase of granules. Higher fracture toughness of the cermets is mainly owing to the crack branch and higher fracture energy of coarse granule.


2013 ◽  
Vol 589-590 ◽  
pp. 584-589
Author(s):  
Hui Jun Zhou ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Han Lian Liu ◽  
Hong Tao Zhu ◽  
...  

In this study, titanium carbonitride (Ti(C,N)) based cermets were prepared by submicron particles, sintered in a vacuum and hot-pressing furnace. And the effect of different ball-milling time (36 h, 48 h, 60 h and 72 h, respectively, mostly aimed for mixing) on the mechanical properties of Ti(C,N)-based cermets, including transverse rupture strength (TRS), Vickers hardness (HV20), fracture toughness (KIC) and microstructure were investigated. The results showed that the TRS, hardness and fracture toughness were all improved with an increase in ball-milling time (not more than 60 h). Scanning electron microscopy (SEM) investigations on the microstructure of cermets with different ball-milling time revealed that the compound powders were not very well-distributed as a whole and there were coarse hard phase grains, but the microstructure was very homogeneous in parts, and the microstructure of cermets with a ball-milling time of 60 h is relatively more homogeneous. So a refinement to Ti(C,N) raw particles is needed in later studies.


2010 ◽  
Vol 154-155 ◽  
pp. 1319-1323 ◽  
Author(s):  
Xing Hai Wang ◽  
Chong Hai Xu ◽  
Ming Dong Yi ◽  
Hui Fa Zhang

In recent, the development of new die materials is one of the important topics in the field of die research. In this paper, effects of nano-ZrO2 addition on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The newly developed Ti(C,N)-based cermet die materials with different contents of nano-ZrO2 of 0~25wt% were prepared by hot pressing technique under vacuum atmosphere at 1450°C for 30min. Moreover, the microstructure of this Ti(C,N)-based cermet die materials was observed by environmental scanning electron microscope. It indicates that the comprehensive mechanical properties can reach the optimum when the weight percent of the nano-ZrO2 is 10%. The corresponding flexural strength and fracture toughness is 967 MPa and 13.62 MPa•m1/2, respectively which is approximately 65% and 110% higher than that of the cermet without nano-ZrO2 addition. It suggests that the addition of nano-ZrO2 can improve the mechanical properties especially the fracture toughness and flexural strength of Ti(C,N)-based cermet die materials.


2017 ◽  
Vol 726 ◽  
pp. 292-296 ◽  
Author(s):  
Peng Wu ◽  
Shao Cun Liu ◽  
Xiu Rong Jiang

The microstructures of the prepared Ti(C, N)-based cermets with various ratios of Co to Ni+Co were studied using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Mechanical properties such as transverse rupture strength (TRS), fracture toughness (K1C) and hardness (HRA) were also measured. The results showed that when Ni was partly replaced by Co, the core size of hard particle and the thickness of rim phase changed. With the increasing of the ratio of Co to Ni+Co, the porosity of the cermets increased gradually, the fracture toughness of the cermets decreased gradually, the transverse rupture strength increased firstly and then decreased, the hardness changed slightly。When the ratio of Co to Ni+Co was 0.2, the cermets had better transverse rupture strength (TRS), which was characterized by fine grains and the moderate thickness of rim phase in the binder.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 171 ◽  
Author(s):  
Shashank Ramesh Babu ◽  
Thomas Paul Davis ◽  
Tim Haas ◽  
Antti Jarvenpää ◽  
Jukka Kömi ◽  
...  

As-quenched low-carbon martensitic steels (<0.2 wt.% C) contain auto-tempered carbides. Auto-tempering improves the work hardening and upper-shelf impact energy; however, an efficient characterization method to determine the degree of auto-tempering has not been available. This paper demonstrates an efficient image processing tool that calculates the relative auto-tempered carbide fraction by analyzing scanning electron microscope micrographs. By the process of image segmentation, the qualitative volume fraction of auto-tempered carbides can be determined, and an associated color map produced, which distinguished the levels of auto-tempering. This image processing tool could become useful for the optimization of new low-carbon steel’s mechanical properties.


2016 ◽  
Vol 674 ◽  
pp. 94-99 ◽  
Author(s):  
Der Liang Yung ◽  
Irina Hussainova ◽  
M.A. Rodriguez ◽  
Rainer Traksmaa

ZrC – TiC composites containing 20 wt.% TiC, along with and without 0.2 wt.% graphite were prepared by spark plasma sintering (SPS) at temperatures between 1600 - 1900 °C for 10 min under pressure up to 100 MPa. The addition of free carbon tends to reduce the appearance of tertiary phases in the microstructure according to scanning electron microscope (SEM) images. However, free carbon also reduced the mechanical properties of Vickers’ hardness and fracture toughness of the composites. SPS data showed when pressure was increased to 100 MPa, evident grain growth started to occur at a temperature as low as 1600 °C resulting in relative density > 100%. Samples produced at 1600 °C, but with maximum allowable pressure according to the SPS machine, yielded samples with greater hardness and fracture toughness compared to samples produced at 1900 °C.


2016 ◽  
Vol 849 ◽  
pp. 603-608 ◽  
Author(s):  
Mei Ling Wu ◽  
Feng Wei Guo ◽  
Ming Li ◽  
Ya Fang Han

The effect of strontium (Sr) addition (0.2 at.%) on the microstructure and mechanical properties of Nb-12Si-22Ti alloys were studied. Microstructure of the alloys was observed by scanning electron microscope, and their phase compositions were analyzed with X-ray diffraction and Electro-Probe Microanalyzer. The room temperature fracture toughness was measured. The results indicated that the phases of Nbss and Nb3Si were presented in Nb-12Si-22Ti alloys. However, with the Al and Sr addition, the alloys were composed of Nbss and β-Nb5Si3. Compared with the Nb-12Si-22Ti alloys, the value of room temperature fracture toughness increased about 46% and 73% with the addition of Al and Sr alloy, respectively. The relationship between the microstructure and the mechanical properties was discussed.


2013 ◽  
Vol 815 ◽  
pp. 43-47
Author(s):  
Cun Guang Ding ◽  
Xue Quan Liu ◽  
Yi Li ◽  
Chang Hai Li ◽  
Nan Li ◽  
...  

A fibrous monolith cemented carbide with WC-6%Co as cell and WC-20%Co as cell boundaries was produced through hot co-extrusion process in this paper. The density, hardness, transverse rupture strength (TRS) and fracture toughness (KIc) of the fibrous monolith cemented carbide were tested, and the fracture and crack propagation were observed by metalloscope and Scanning Electron Microscope. The result shows fibrous monolith structure design could effectively improve the TRS and the KIc of WC/Co cemented carbide without a significant decrease of hardness. It is the reason of high transverse rupture strength and fracture toughness that WC-20%Co can absorb more fracture energy in order to slow, prevent, or deflect crack propagation, proved by metalloscope and scanning electron microscope.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1551
Author(s):  
Chao Yin ◽  
Yingbiao Peng ◽  
Jianming Ruan ◽  
Lin Zhao ◽  
Ren Zhang ◽  
...  

In this paper, the influences of Cr3C2/VC content on WC grain size, WC grain shape and mechanical properties of WC–6 wt. % Co cemented carbides were investigated. The results showed that the grain size first rapidly decreased and then slightly decreased with the increasing Cr3C2/VC content, and VC led to finer grain size and narrower size distribution. HRTEM/EDS analysis of the WC/Co interface indicates that the segregation concentration of V is much larger than that of Cr, which may be a strong response to the higher inhibition efficiency of VC. The addition of Cr3C2 induced triangular prism shape WC grains while VC generated stepped triangular prism grains. Despite the grain growth inhibitor (GGI) mechanisms of Cr3C2/VC have been extensively studied in the literature, the doping amount, especially the doping limit, has not been systematically investigated. In this work, the saturated solubilities of Cr and V in cobalt binder phase along with carbon content hare been predicted based on thermodynamic calculations. Based on the theoretical calculations, the doping amount of Cr3C2/VC is designed to be gradually increasing until more or less over their maximum solubilities in the binder phase, thereby investigating the subsequent microstructure and mechanical properties. When the doping of Cr3C2/VC exceeds the maximum solubility in Co phase, Co-rich Cr-carbides and Co-deficient V-carbides would form respectively, which were detrimental to the transverse rupture strength (TRS) and impact toughness. The hardness increased with the increasing Cr3C2/VC content, while the fracture toughness decreased with the increasing Cr3C2/VC content. The TRS initially enhanced and then declined, but the stepped triangular prism shape grains and low fraction of WC/Co interface in WC–6Co–VC cemented carbide led to a more pronounced decline in the TRS. The sample with 0.6 wt. % Cr3C2 addition had good comprehensive mechanical properties, its hardness, fracture toughness and TRS were 1880 kg/mm2, 9.32 MPa·m1/2 and 3450 MPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document