Effects of Micropores on Processing and Properties of Porous Irons

2017 ◽  
Vol 863 ◽  
pp. 26-32
Author(s):  
Ming Zhou Su ◽  
Hui Meng Wang ◽  
Chang Chen

Porous irons with only micropores were produced through powder metallurgy route. Corn starch of small particle size (5-15μm) was utilized to regulate the densification of green compacts. The structural and mechanical properties of porous irons sintered at different temperatures were evaluated. The porosities increased with increasing the starch content, which reduced compressive strength and increased volumetric shrinkage. The compressive yield stress increased with increasing sintering temperature. It was also found that the effect of sintering temperature on the microstructure and compressive properties was more obvious when green compacts were less densified. Moreover, volumetric shrinkage of porous irons without adding starch remains in a quite low level for different sintering temperatures.

2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


2020 ◽  
Vol 10 (22) ◽  
pp. 8279
Author(s):  
Elisa Fiume ◽  
Gianpaolo Serino ◽  
Cristina Bignardi ◽  
Enrica Verné ◽  
Francesco Baino

The intrinsic brittleness of bioactive glasses (BGs) is one of the main barriers to the widespread use of three-dimensional porous BG-derived bone grafts (scaffolds) in clinical practice. Among all the available strategies for improving the mechanical properties of BG-based scaffolds, strut densification upon sintering treatments at high temperatures represents a relatively easy approach, but its implementation might lead to undesired and poorly predictable decrease in porosity, mass transport properties and bioactivity resulting from densification and devitrification phenomena occurring in the material upon heating. The aim of the present work was to investigate the sinter-crystallization of a highly bioactive SiO2-P2O5-CaO–MgO–Na2O–K2O glass (47.5B composition) in reference to its suitability for the fabrication of bonelike foams. The thermal behavior of 47.5B glass particles was investigated upon sintering at different temperatures in the range of 600–850 °C by means of combined thermal analyses (differential thermal analysis (DTA) and hot-stage microscopy (HSM)). Then, XRD measurements were carried out to identify crystalline phases developed upon sintering. Finally, porous scaffolds were produced by a foam replica method in order to evaluate the effect of the sintering temperature on the mechanical properties under compression loading conditions. Assessing a relationship between mechanical properties and sintering temperature, or in other words between scaffold performance and fabrication process, is a key step towards the rationale design of optimized scaffolds for tissue repair.


2013 ◽  
Vol 465-466 ◽  
pp. 886-890
Author(s):  
Adibah Amir ◽  
Othman Mamat

Tronohs raw sand was converted into fine silica particles via a series of milling process. Addition of these fine particles into iron composite was found to modify its mechanical properties. The composite was prepared using powder metallurgy technique with varying percentage of silica particles; 5, 10, 15, 20 and 25wt%. The composites were sintered at three different temperatures; 1000° C, 1100° C and 1200° C to find the most suitable sintering temperature. Changes in density and hardness were observed. The results showed that composite consist of 20wt% silica particles and sintered at 1100° C exhibits best improvement.


2013 ◽  
Vol 686 ◽  
pp. 44-48 ◽  
Author(s):  
Noor Faeizah Amat ◽  
Andanastuti Muchtar ◽  
Norziha Yahaya ◽  
Mariyam Jameelah Ghazali

This study aims to evaluate the effects of sintering temperature on the density and hardness of tetragonal zirconia polycrystals stabilized with 3 mol% 3Y-TZP dental ceramic type. Five cylindrical specimens were fabricated from zirconia powder of particle size 50 nm via colloidal processing. The specimens were sintered densely at the final sintering temperatures of 1000, 1100, 1200, and 1300 °C, respectively. The sintered density and hardness of the sintered specimen were then examined. The results showed that the sintered densities and hardness of the specimen increased as the temperature increased from 1000 °C to 1300 °C. Zirconia 3Y-TZP could gain near full density and reach hardness of as high as 11.30 GPa at the final sintering temperature of 1300 °C. The density and hardness of zirconia structured from 3Y-TZP can be improved by controlling the final sintering temperature.


2000 ◽  
Vol 15 (11) ◽  
pp. 2314-2321 ◽  
Author(s):  
Noboru Yoshikawa ◽  
Singo Funahashi ◽  
Shoji Taniguchi ◽  
Atsushi Kikuchi

Al/Al2O3 composites were fabricated by a displacement reaction between SiO2 and molten Al. In this study, fabrication of Al/Al2O3 composites was attempted by means of reactive infiltration to provide variation of their mechanical properties. SiO2 preforms having various porosities and pore size distributions were prepared by sintering the powder at different temperatures between 1273 and 1723 K. Molten Al was infiltrated at 1373 K without application of pressure. Infiltration kinetics were studied and the microstructures of the composite bodies were observed by means of scanning electron microscopy (with energy dispersive x-ray microanalysis), wave dispersive x-ray microanalysis, and x-ray diffractions. The infiltrated specimens were mainly composed of Al and α–Al2O3 phases, and the Si content was less than 5 at.%. Volume fraction of Al phase in the composite bodies was not altered very much with the porosities of the SiO2 preforms because of the difficulty in filling out the entire pore space. Properties and microstructures of Al/Al2O3 composites, however, were dependent on the sintering temperature of the SiO2 preforms. In the case of low sintering temperature, a thick Al channel existed, which deformed upon compression. In the case of high sintering temperature, the microstructure became homogeneous and had thinner Al channels. The composite bodies became brittle. The deformation behavior was shown to be changed from ductile to brittle as an increase of the sintering temperature of the preforms.


2011 ◽  
Vol 295-297 ◽  
pp. 581-584
Author(s):  
Li Qiang Zhang ◽  
Ping Huo ◽  
Yong Huang ◽  
Peng Li ◽  
Rong Yang

In laboratory condition, industrial zirconia and alumina were used as raw materials, whose particle size was controlled by ultrafine treatment of mechanical milling. The effects of different firing temperatures and soaking times on mechanical properties of Al2O3-based composite ceramics liner were researched. And the microstructure of samples was studied by scanning electron microscopy (SEM). The results indicate that mechanical properties of samples kept 3 h at sintering temperature of 1600°C with adding 30 wt% zirconia are the best.


2008 ◽  
Vol 1128 ◽  
Author(s):  
Mira Sakaliyska ◽  
Sergio Scudino ◽  
Hoang Viet Nguyen ◽  
Kumar Babu Surreddi ◽  
Birgit Bartusch ◽  
...  

AbstractNanostructured Al-Mg bulk samples with compositions in the range of 10 – 40 at.% Mg have been produced by consolidation of mechanical alloyed powders. Powders with composition Al90Mg10 and Al80Mg20 were consolidated into highly dense specimens by hot extrusion. Room temperature compression tests for the Al90Mg10 specimen reveal interesting mechanical properties, namely, a high strength of 630 MPa combined with a plastic strain of about 4 %. The increase of the Mg content to 20 at.% increases the strength by about 100 MPa but it suppresses plastic deformation. The Al60Mg40 powder was consolidated at different temperatures by spark plasma sintering and the effect of the sintering temperature on microstructure, density and hardness have been studied. The results reveal that both density and hardness of the consolidated samples increase with increasing sintering temperature, while retaining a nanocrystalline structure. These results indicate that powder metallurgy is a suitable processing route for the production of nanocrystalline Al-Mg alloys with promising mechanical properties.


2014 ◽  
Vol 896 ◽  
pp. 591-595
Author(s):  
Chuin Hao Chin ◽  
Andanastuti Muchtar ◽  
Noor Faeizah Amat ◽  
Mariyam Jameelah Ghazali ◽  
Norziha Yahaya

Zirconia-based ceramics exhibit excellent mechanical properties and biocompatibility in dental applications. However, the production of translucent zirconia that offers resemblance to real teeth remains a challenge. This study aims to fabricate zirconia compacts by cold isostatic pressing (CIP) and investigate the influence of sintering temperature on translucency, microstructure, hardness, and density of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). Zirconia stabilized with 3 mol% yttria (3Y-TZP) was pressed by uniaxial pressing and later by CIP to produce green bodies in pellet form. Subsequently, the green bodies were sintered at different temperatures (1100 °C to 1300 °C). The specimens were then investigated in terms of translucency, density, and hardness. X-ray diffraction was also performed and the microstructure of the specimens was observed under a scanning electron microscope (SEM). Density and light transmittance tests results showed that zirconia sintered at 1200 °C exhibits the highest density (5.957 g/cm3) and light transmittance intensity. Vickers hardness test showed that higher sintering temperatures result in higher hardness of the sintered zirconia. SEM micrographs illustrate the effect of microstructural changes on the translucency of zirconia. A temperature of 1200 °C is found to be the recommended sintering temperature at which zirconia exhibiting optimum translucency and mechanical properties is produced. CIP is found to be a suitable consolidation method to produce high-density translucent zirconia.


2018 ◽  
Vol 32 (27) ◽  
pp. 1850321 ◽  
Author(s):  
Xiaoguang Pan ◽  
Aimin Sun ◽  
Yingqiang Han ◽  
Wei Zhang ◽  
Xiqian Zhao

In this work, sol–gel auto-combustion technology is used to synthesize nanocrystalline Ni[Formula: see text]Cu[Formula: see text]Co[Formula: see text]Fe2O4 with high purity metal nitrate and citric acid as precursor solution. The prepared samples are sintered at different temperatures (400[Formula: see text]C, 500[Formula: see text]C, 600[Formula: see text]C, 700[Formula: see text]C, 800[Formula: see text]C, 900[Formula: see text]C, 1000[Formula: see text]C and 1100[Formula: see text]C) for 3.5 h. The structure and magnetic properties of the samples are characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and vibrating sample magnetometer (VSM). The analysis of the XRD patterns confirms that all the samples have a single-phase cubic spinel structure. The particle size of the prepared samples (between 23 nm and 36 nm) is determined by the Scherrer equation. The effect of particle size is through observation of samples sintered at different temperatures. FT-IR spectroscopy shows the characteristic peak is near 588 cm[Formula: see text]. And the measurement also confirms the formation of spinel structure. The magnetic parameters of the samples are measured by VSM at room temperature with a maximum magnetic field of 1 T. Coercivity, remanent magnetization and saturation magnetization change with the changing sintering temperature. It can be clearly observed that the magnetic properties increase significantly with the temperature increasing from 600[Formula: see text]C to 700[Formula: see text]C. The dM/dH versus H curves are obtained by differentiating the hysteresis loop. The increasing peak height of dM/dH at [Formula: see text], indicates a magnetically stable state for the samples with good crystalline cubic spinel structure.


Sign in / Sign up

Export Citation Format

Share Document