Study on the Sludge Dewatering Based on the Filtration Characteristic of Geotextiles

2014 ◽  
Vol 1004-1005 ◽  
pp. 967-971
Author(s):  
Lan Li ◽  
Bo Wen Cheng

The dehydration and minimization of sludge depended on filtering technology of geotextile is a hot issue in environmental project. By studying related process, the types, weaving forms, weaving structures and pore sizes of geotextile were tested. CPAM was the optimal flocculant with the dose of 90-110 mg/L and twill weaving geotextile with pore size of 0.5 mm was best. The final water content of sludge could drop to 40 %.


2012 ◽  
Vol 573-574 ◽  
pp. 126-130
Author(s):  
Xiao Yan Yu ◽  
Su Li Zhi ◽  
Run Juan Wang ◽  
Shu Ting Zhang ◽  
Xue Bin Lu

Applying electroosmosis to sludge dewatering practically, methods for improving electroosmotic dewatering must be explored. The influence of initial pH, adding Al2 (SO4)3 dose and ash content in sludge on electroosmotic dewatering behavior was investigated. The results show that acid or alkaline environment is unfavorable for electroosmotic dewatering, especially initial pH of sludge closing to the isoelectric point, electroosmotic dewatering behaves worst. With increasing Al2(SO4)3 coagulant-aid dose, the decreasing rate of water content becomes slower gradually during electroosmotic dewatering. Besides, higher ash content in sludge has a better effect on vaccum filtration, but slightly impact on electroosmotic dewatering. When ash content increases to 69.9% from 52.4%, final water content reduces to 64.3% from 78.3% using vaccum filtration, and the decreasing amount of water content by electroosmotic dewatering ranges from 16.5% to 12.3%.



2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.



Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1784 ◽  
Author(s):  
Zhihong Yang ◽  
Nan Chen ◽  
Xiaomei Qin

The gelcasting method is usually employed to fabricate relatively dense ceramics. In this work, however, porous Al2O3 ceramics with submicron-sized pores were fabricated using the water-based gelcasting method by keeping the Al2O3 content at low levels. By controlling the water content in the ceramic slurries and the sintering temperature of the green samples, the volume fractions and the size characteristics of the pores in the porous Al2O3 can be readily obtained. For the porous Al2O3 ceramics prepared with 30 vol.% Al2O3 content in the slurries, their open porosities were from 38.3% to 47.2%, while their median pore sizes varied from 299.8 nm to 371.9 nm. When there was more Al2O3 content in the slurries (40 vol.% Al2O3), the porous Al2O3 ceramics had open porosities from 37.0% to 46.5%, and median pore sizes from 355.4 nm to 363.1 nm. It was found that a higher sintering temperature and Al2O3 content in the slurries increased the mechanical strength of the porous Al2O3 ceramics.



Author(s):  
Jhonatas C. Rosa ◽  
Andreza P. Mendonça ◽  
Angélica dos S. Oliveira ◽  
Sylviane B. Ribeiro ◽  
Andréia do R. Batista ◽  
...  

ABSTRACT ‘Babassu’ mesocarp flour has been used by the pharmaceutical, human food and animal feed industries. However, there is lack of standardization in the production, as well as absence of information on the management of the product’s quality. Thus, the objective of this study was to dry the ‘babassu’ mesocarp in forced-air oven and solar dryer, adjust different mathematical models to the experimental data, as well as to quantify the levels of proteins and crude fiber of the produced flour. The criteria for the adjustment were the coefficient of determination, magnitude of the mean relative error, standard deviation of estimate and the residual distribution trend. Drying in the shortest time occurred in oven at 60 °C (370 min), leading to water content of 4.62%, while in the solar dryer the final water content was 8.07% in 6 days. The mathematical model Two Terms showed the best fit to the experimental data for oven drying and the Midilli model showed the best fit in solar dryer. There was an increase in protein content with the drying in solar dryer and oven at 40, 50 and 60 °C (1.36, 1.33, 1.15 and 1.37%, respectively) in relation to fresh mesocarp (0.88%). Drying in both oven and solar dryer promoted increase of protein in the flour.



1996 ◽  
Vol 431 ◽  
Author(s):  
W. P. Steckle ◽  
M. A. Mitchell ◽  
P. G. Apen

AbstractOrganic analogues to inorganic zeolites would be a significant step forward in engineered porous materials and would provide advantages in range, selectivity, tailorability and processing. Rigid molecular foams or “organic zeolites” would not be crystalline materials and could be tailored over a broader range of pore sizes and volumes. A novel process for preparing hypercrosslinked polymeric foams has been developed via a Friedel-Crafts polycondensation reaction. A series of rigid hypercrosslinked foams have been prepared using simple rigid polyaromatic hydrocarbons including benzene, biphenyl, m-terphenyl, diphenylmethane, and polystyrene, with p-dichloroxylene (DCX) or divinylbenzene (DVB) as the crosslinking agent. Transparent gels are formed suggesting a very small pore size. After drying the foams are robust and rigid. Densities of the resulting foams can range from 0.15g/cc to 0.75g/cc. Nitrogen adsorption studies have shown that by judiciously selecting monomers and crosslinking agent along with the level of crosslinking and the cure time of the resulting gel, the pore size, pore size distribution, and the total surface area of the foam can be tailored. Surface areas range from 160 to 1,200 m2/g with pore sizes ranging from 6Å to 2,000Å. Further evidence of the uniformity of the foams and their pore sizes has been confirmed by high resolution TEM.



2019 ◽  
Vol 21 (6) ◽  
pp. 3122-3133 ◽  
Author(s):  
Ruben Heimböckel ◽  
Frank Hoffmann ◽  
Michael Fröba

A new capacitor model that confirms the non-constant capacitive contribution of different pore sizes and provides the possibility of simulating the capacitance values of porous carbons.



Author(s):  
Bingbing Li ◽  
Bani Davod Hesar ◽  
Yiwen Zhao ◽  
Li Ding

Pore size, external shape, and internal complexity of additively manufactured porous titanium scaffolds are three primary determinants of cell viability and structural strength of scaffolds in bone tissue engineering. To obtain an optimal design with the combination of all three determinants, four scaffolds each with a unique topology (external geometry and internal structure) were designed and varied the pore sizes of each scaffold 3 times. For each topology, scaffolds with pore sizes of 300, 400, and 500 µm were designed. All designed scaffolds were additively manufactured in material Ti6Al4V by the direct metal laser melting machine. Compression test was conducted on the scaffolds to assure meeting minimum compressive strength of human bone. The effects of pore size and topology on the cell viability of the scaffolds were analyzed. The 12 scaffolds were ultrasonically cleaned and seeded with NIH3T3 cells. Each scaffold was seeded with 1 million cells. After 32 days of culturing, the cells were fixed for their three-dimensional architecture preservation and to obtain scanning electron microscope images.



2020 ◽  
Vol 10 (24) ◽  
pp. 8981
Author(s):  
Yuhang Liu ◽  
Dongqing Li ◽  
Lei Chen ◽  
Feng Ming

Ice lens is the key factor which determines the frost heave in engineering construction in cold regions. At present, several theories have been proposed to describe the formation of ice lens. However, most of these theories analyzed the ice lens formation from a macroscopic view and ignored the influence of microscopic pore sizes and structures. Meanwhile, these theories lacked the support of measured data. To solve this problem, the microscopic crystallization stress was converted into the macro mean stress through the principle of statistics with the consideration of pore size distribution. The mean stress was treated as the driving force of the formation of ice lens and induced into the criterion of ice lens formation. The influence of pore structure and unfrozen water content on the mean stress was analyzed. The results indicate that the microcosmic crystallization pressure can be converted into the macro mean stress through the principle of statistics. Larger mean stress means the ice lens will be formed easier in the soil. The mean stress is positively correlated with initial water content. At the same temperature, an increase to both the initial water content and the number of pores can result in a larger mean stress. Under the same initial water content, mean stress increases with decreasing temperature. The result provides a theoretical basis for studying ice lens formation from the crystallization theory.



2018 ◽  
Vol 36 (4) ◽  
pp. 665-685
Author(s):  
Mei Han ◽  
Chao Han ◽  
Zuozhen Han ◽  
Zhigang Song ◽  
Wenjian Zhong ◽  
...  

The effects of brittle minerals in shale diagenesis on shale pores remain controversial and it is difficult to quantify directly. However, the relationship between brittle minerals and shale pores could provide indirect guidance regarding diagenesis processes in post-mature marine shales. In this study, the pore size distribution was determined, and the relationship between pore volume and shale composition was examined in shale samples with different total organic carbon contents from the Wufeng and Longmaxi Formations, with the objective of distinguishing pore size ranges in organic matter and inorganic minerals, respectively, and studying shale diagenesis. The samples of the Wufeng and Longmaxi shales are composed of clay minerals, calcite, dolomite, quartz, feldspar, and some minor components. The pore size distributions, which were determined using nitrogen adsorption isotherm analysis of shale and kerogen, show similar trends for pore sizes less than approx. 6.5 nm but different trends for larger pore sizes. Mercury injection saturation shows that macropores account for 14.4–22% of the total pore volume. Based on a series of crossplots describing the relationships between shale composition and pore volume or porosity associated with different pore sizes as well as on scanning electron microscopy observations, organic matter pores were found to comprise most of the micro-mesopores (pore diameters < 6.5 nm). Organic matter pores and intraparticle pores associated with carbonate constitute the majority of mesopores (pore diameters 6.5–50 nm). Finally, interparticle pores associated with quartz comprise the majority of the macropores. The mesopores associated with carbonate were formed by dissolution during diagenesis, whereas the macropores associated with quartz are the remainders of the original interparticle pores. Mesopore volumes increase with increasing carbonate content while macropore volumes decrease due to the ‘pore size controlled solubility’ effect, which causes dissolved calcium carbonate to precipitate in larger macropores.



Author(s):  
Arunkumar Selvam ◽  
Chun Hwa See ◽  
Brian Barkdoll ◽  
Shyam Prasad ◽  
John O'Haver


Sign in / Sign up

Export Citation Format

Share Document