Research and Prospects of Improving the Fatigue Life of Wleded Train Bogie Structure

2011 ◽  
Vol 189-193 ◽  
pp. 3292-3295 ◽  
Author(s):  
Bo Lin He ◽  
Ying Xia Yu ◽  
Jing Liu

Because of the high-speed, high transport capacity, low power consumption and a lot of technical and economic advantages, high-speed rail way are universal importance. High-speed railway with the speed of more than 300k/h has been run in China. But fatigue cracking of wleded bogie structure is markedly increased with increasing the train speed. How to avoid fatigue destroy of wleded bogie structure and ensure the safety of transportation are urgent problems to be soved in engineering. A lot of research works have been done at home and abroad. Comparing with traditional surface engineering method, there are many advantages of ultrasonic impact , for example, simple operation, less power consumption, high efficiency, adapt to a wide range, easy to achieve automate production and so on. It is an effective way to surface strengthening of metallic materials. Plastic flow and grain refinement on the metal surface can be obtained by using ultrasonic impact method, and the residual compressive stress on the surface can also be formed. So the mechanical properties of metal surface can be greatly improved. It is new method used in the area of welded structure, especially in the welded bogie structure. It is a new research direction to research the surface nanocrystallization mechanisium of ultrasonic impact, the effect of ultrasonic impac on the fatigue properties and failure mechanisium of wled joint of bogie.

2011 ◽  
Vol 130-134 ◽  
pp. 1911-1914 ◽  
Author(s):  
Du Chen ◽  
Feng Kang ◽  
Qing Yuan Zhu ◽  
Shu Mao Wang

Combine harvester have to be operated in a wide range of field condition which may induce varying feeding rate. Forward speed is a main variable to control the feeding rate of combine harvester for high efficiency. In this study a control strategy based on optimum threshing power consumption model was developed and integrated into a speed control system for combine harvester automation. A conventional self-propelled combine harvester (Xinjiang-II) was equipped with multiple sensors to collect online information, including forward speed, threshing drum torque and speed. Forward speed was then adjusted by an electric-hydraulic unit based on designed PID controller to achieve an optimum range of threshing power consumption. Field test was conducted to evaluate the performance of the controller under variable feeding rate condition. From obtained results, the controller can improve the efficiency of tested machine during field operation.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Kannadasan K

Reversible logic circuits have drawn attention from a variety of fields, including nanotechnology, optical computing, quantum computing, and low-power CMOS design. Low-power and high-speed adder cells (like the BCD adder) are used in binary operation-based electronics. The most fundamental digital circuit activity is binary addition. It serves as a foundation for all subsequent mathematical operations. The main challenge today is to reduce the power consumption of adder circuits while maintaining excellent performance over a wide range of circuit layouts. Error detection in digital systems is aided by parity preservation. This article proposes a concept for a fault-tolerant parity- preserving BCD adder. To reduce power consumption and circuit quantum cost, the proposed method makes use of reversible logic gates like IG, FRG, and F2G. Comparing the proposed circuit to the current counterpart, it has fewer constant inputs and garbage outputting devices and is faster.


2020 ◽  
Vol 12 ◽  
Author(s):  
Deepika Bansal ◽  
Bal Chand Nagar ◽  
Ajay Kumar ◽  
Brahamdeo Prasad Singh

Objective: A new efficient keeper circuit has been proposed in this article for achieving low leakage power consumption and to improve power delay product of the dynamic logic using carbon nanotube MOSFET. Method: As a benchmark, an one-bit adder has been designed and characterized with both technologies Si-MOSFET and CN-MOSFET using proposed and existing dynamic circuits. Furthermore, a comparison has been made to demonstrate the superiority of CN-MOSFET technology with Synopsys HSPICE tool for multiple bit adders available in the literature. Result: The simulation results show that the proposed keeper circuit provides lower static and dynamic power consumption up to 57 and 40% respectively, as compared to the domino circuits using 32nm CN-MOSFET technology provided by Stanford University. Moreover, the proposed keeper configuration provides better performance using SiMOSFET and CN-MOSFET technologies. Conclusion: A comparison of the proposed keeper with previously published designs is also given in terms of power consumption, delay and power delay product with the improvement up to 75, 18 and 50% respectively. The proposed circuit uses only two transistors, so it requires less area and gives high efficiency.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Bo Zhang ◽  
Dezhi Tan ◽  
Zhuo Wang ◽  
Xiaofeng Liu ◽  
Beibei Xu ◽  
...  

AbstractRealizing general processing applicable to various materials by one basic tool has long been considered a distant dream. Fortunately, ultrafast laser–matter interaction has emerged as a highly universal platform with unprecedented optical phenomena and provided implementation paths for advanced manufacturing with novel functionalities. Here, we report the establishment of a three-dimensional (3D) focal-area interference field actively induced by a single ultrafast laser in transparent dielectrics. Relying on this, we demonstrate a radically new approach of self-organized phase-transition lithography (SOPTL) to achieve super-resolution construction of embedded all-inorganic photonic textures with extremely high efficiency. The generated textures exhibit a tunable photonic bandgap (PBG) in a wide range from ~1.3 to ~2 μm. More complicated interlaced textures with adjustable structural features can be fabricated within a few seconds, which is not attainable with any other conventional techniques. Evidence suggests that the SOPTL is extendable to more than one material system. This study augments light–matter interaction physics, offers a promising approach for constructing robust photonic devices, and opens up a new research direction in advanced lithography.


2021 ◽  
Vol 1 (4) ◽  
pp. 63-70
Author(s):  
YU.E. Kisel' ◽  
◽  
S.P. Simokhin ◽  
S.A. Murachev ◽  
◽  
...  

The technology of bath-free ironing of parts in an electrolyte flow with simultaneous hydrome-chanical activation of the growing surface is proposed. Its advantages over the traditional type of coating are introduced. The structure, some physicomechanical and operational properties of iron coatings were studied depending on the electrolysis regimes and the composition of electrolytes. The possibility of high-speed electrodeposition of iron with a wide range of physical and mechanical properties is shown. There were shown the electrolysis modes, which make it possible to obtain high-quality strong-adhered pure-iron coatings with a wear resistance several times higher than hardened alloy steels and a precipitation growth rate tens of times higher than with traditional iron-ing. A typical technological process of parts ironing was developed. It was tested on the example of restoration of hydraulic valve spools of agricultural machinery. The design of an installation and an electrochemical cell for ironing the valve hydraulic distributors, providing optimal hydrodynamic conditions when applying coatings to worn surfaces, was proposed. Recommendations for the post-electrolysis treatment of restored parts by iron are given. Bench and field tests of hydraulic valves with remanufactured valves were carried out. They confirmed the results of laboratory studies, and showed that no malfunctions were identified during the operation period. Technical and economic calculations have shown the high efficiency of the proposed technology in comparison with tradi-tional ironing. The introduction of the technology in production will reduce the production area and the time spent on restoring parts by increasing the productivity of the iron process and reducing the number of operations, reducing the cost of materials for preparing electrolytes by reducing the op-eration of anodic treatment and washing, and increasing the reliability of the technology by improv-ing its structural scheme.


Author(s):  
V.I. Kyrychenko ◽  
V.V. Kyrychenko ◽  
V.P. Nezdorovin

The material of the article reflects the results of the next stage of the systematic study of a very important problem in finding effective methods for processing chemical (T) oils into alternative functionally high quality and high biodegradability bioproducts of the fuel and lubricants (PM) materials. The main object of experimental research is the method of acetolysis of oils as one of the practically unexplored methods in comparison with well-developed methods of alcoholysis and esterolysis of T-oils. Based on the considered mechanism of catalytic and reversible reaction of acetolysis of oils as specific preacylation of their triacetylglycerol molecules, chemical-technological bases of processes of acetolysis of oils of two types are developed, namely: basic – rapeseed (g) and composition on its basis with 20 %, castor oil the so-called "ripritsol-20" (years). The optimal technological parameters for achieving high efficiency of acetolysis processes to obtain high-quality intermediates - mixtures of the corresponding FFAs of the general formulas RрC(O)–OH or RррC(O)–OH have been established. The necessity of combining the process of acetolysis of oils (p) or (pp) as the basis of the first stage of processing technology with the next stage, namely the conversion of VJ acids into more active in the reactions of the next stage derivatives - acid chlorides, and by a known, simple and fast method almost quantitative yield of intermediate products - mixtures of HlAn-VZhK (r) or (rr). The conceptual idea of the complex technology indicates the directions of rational processing of mixtures of VZ acids and their anhydrides (mixtures of HlAn-VZhK) into biocomponents of a wide range of purposes. In the second stage of the complex process, it is proposed to process Hlan-IJK mixtures into main bioproducts - biofuels or basic bio-oils by the well-known technologically and perfect Schotten-Bauman method, which is based on the acylation reaction of alcohols of the appropriate structure with chlorides of a certain type. or HlAn-VZhK (pp). Emphasis is placed on the rather favorable course of the acylation reaction of alcohols by the chosen method, in particular on its irreversibility, high speed under standard conditions, under such conditions high technical and economic efficiency of the second stage technology of the complex process is provided. It is shown that the technological operations of the complex process can be modified, directing them to the production of certain bioproducts, such as biofuels or biooils on the basis of adapted selection of the necessary combinations of raw materials. Thus, new biofuels of ester structure are proposed to be obtained by acylation of methanol or ethanol with mixtures of VOR acid chlorides derived from ripol. While new basic biooils of diester structure are recommended to be obtained by acylation of glycolysis of industrial production (in particular ethylene glycol) with a mixture of HlAn-VZhK, derived from the composite oil ripritsol-20. The presented tables of the calculated material balances of each of the stages of the complex process characterize their technical and economic efficiency and environmental safety. The main functional properties and some operational indicators of the experimental samples of products obtained during the research are determined: both biofuels and basic biooils, and composite ones based on the best mineral and bioproducts, in particular biodiesel and motor min-biooils. The analysis of their characteristics convinces that they do not concede on the functional indicators of quality to the best traditional materials of branch of PM-materials. Bibl. 12, Tab. 5.


Author(s):  
N. C. Balnes ◽  
N. Bressloff

This paper describes studies of simple gas turbine engines integrated with electrical transmission components. Recent developments in high-speed lightweight electrical machines and compact power electronics have enabled alternators and motors to be produced which can be coupled directly to the shaft of a gas turbine without an intermediate gearbox. For applications which require a wide range of power outputs, a single-shaft gas turbine with a high speed alternator can be run at constant speed while varying the current drawn from the alternator. This combines the flexibility of operation of a separate power turbine with the simplicity of a single-shaft engine. With this arrangement, in traction use high torques are obtained at low speed, while near-constant engine efficiency is sustained to about 50% of the design power. In the differential engine, the mechanical linkage between the compressor and the turbine is replaced with an electrical linkage. The turbine drives an alternator, and part of the alternator power is taken by a high-speed motor to drive the compressor. The excess alternator power forms the output of the engine. The compressor and turbine are now able to run at different speeds, and their operating points can be separately optimised at different engine conditions. For such an engine, studies show that high efficiency can be maintained to low power levels.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5367
Author(s):  
Tzu-Sen Yang ◽  
Jin-Chern Chiou

Low power consumption is one of the critical factors for successful Internet of Things (IoT) applications. In such applications, gas sensors have become a main source of power consumption because energy conversion efficiency of the microheater is relative over a wide range of operating temperatures. To improve the energy-conversion efficiency of gas-sensor microheaters, this paper proposes integrated switch-mode DC-to-DC power converter technology which we compare with traditional driving methods such as pulse-width modulation and the linear mode. The results indicate that energy conversion efficiency with this proposed method remains over 90% from 150 °C to 400 °C when using a 3.0, 4.2 and 5.0 V power supply. Energy-conversion efficiency increases by 1–74% compared with results obtained using the traditional driving methods, and the sensing film still detects alcohol and toluene at 200 °C and 280 °C, respectively, with high energy conversion efficiency. These results show that the proposed method is useful and should be further developed to drive gas-sensor microheaters, and then integrated into the circuits of the complementary metal-oxide-semiconductor micro electro mechanical systems (CMOS-MEMS).


Author(s):  
Wei-Min Ren

Air-cooled generators have been fulfilling a wide range of applications recently. Concurrent with a low cost target, the market demands high efficiency and high performance designs. Windage and friction losses, caused by rotor rotation and cooling gas flowing through the ventilation circuits, represents one of the largest loss components in air-cooled generators. Carefully managing the windage and friction loss is critical to ensure the success of air-cooled generators. This work is motivated by development of air-cooled high-speed generators. In such applications, the flow inside the annular gap between the rotor and stator is highly turbulent. The flow characteristics are not fully understood. Physics-based correlations, which calculate the windage and friction losses, don’t exist in the literature. The purpose of this work is to develop such transfer functions for machine design. Numerical simulations, using commercial CFD code FLUENT 6.0 and Design of Experiment (DOE) method, have been carried out to study the flow characteristics in the annular space between the cylindrical rotor and stator. All simulations were performed using an axial-symmetric model, along with RNG k-ε turbulence model and enhanced wall treatment. In the study, the generator rated speed ranged from 5000 to 20000 rpm; the Taylor number ranged from 1750 to 78000; and the Mach number ranged from 0.25 to 1.0. The effect of axial flow on windage loss was carefully studied. Axial flow exhibited a strong impact on windage loss. The CFD results are rationalized. Transfer functions for windage and axial friction losses are created. They provide a better basis to explore the design space at the early stage of the product development.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Sign in / Sign up

Export Citation Format

Share Document