Research on Flame Retardance and Application of Magnesium Hydroxide Sulfate Whiskers to HDPE

2011 ◽  
Vol 239-242 ◽  
pp. 743-747
Author(s):  
Jian Rong Xue ◽  
Hong Zhong ◽  
Jian Gang Fu

The flame retardant mechanism of magnesium hydroxide sulfate whiskers(MHSH) is analysed and MHSH and magnesium hydroxide are used to fill high-density polyethylene(HDPE) respectively. The mechanical and flame resistance properties of composite material (HDPE) were also studied in this paper contrastively. The tensile strength and elongation of the compound are increased 2.5% and 36% severally, while MHSH content in weight reaches 20%;at the same time, the oxygen index (OI) of composite materials varies from 17 to 24.2. In contrast, the tensile strength and elongation of the HDPE/ Mg(OH)2compound are decreased 6.4% and 48% respectively, OI being 19.6. To sum up, the results of tensile and flame tests of compound material showed the HDPE containing as-prepared whiskers had better overall properties,exceeding that of Mg(OH)2.

2019 ◽  
Vol 33 (11) ◽  
pp. 1466-1477
Author(s):  
Qingfa Zhang ◽  
Wenyu Lu ◽  
Liang Zhou ◽  
Donghong Zhang ◽  
Hongzhen Cai ◽  
...  

Biocomposites were prepared with corn straw slagging (CSS) and high-density polyethylene (HDPE) at four loading levels (10, 20, 30, and 40 wt%) by extrusion method. CSS/HDPE composites were tested by tension, oxygen index meter, differential scanning calorimetry, X-ray diffraction, and the scanning electron microscopy. The scanning electron microscopy showed that CSS was dispersed uniformly in the HDPE matrix and strong interfacial interaction was achieved, which had an important influence on the tensile strength of the composites. The tensile strength of the composites could be improved with proper increase of CSS and reached maximum value at 30 wt% content. Furthermore, the addition of CSS played an important role in improving the flame-retardant ability of CSS/HDPE composites, and the limited oxygen index was 31.26% at 40 wt% content, good flame-retardant effect achieved.


2014 ◽  
Vol 983 ◽  
pp. 3-6
Author(s):  
Ming Gao ◽  
Chun Guang Song ◽  
Dan Rong ◽  
Yu Wen Ji

Gangue as flame retardant was used to PVC, the mechanical properties and flame retardance of the samples were studied. The resultant data show that gangue little effect on the mechanical properties of the sample, especially tensile strength, yield stress, and 10% of gangue obtained good flame retardance. PVC treated with flame-retardants showed a high limiting oxygen index, char yield, which indicated that the flame retardance of the treated PVC was improved.


2021 ◽  
pp. 004051752110086
Author(s):  
MJ Suriani ◽  
SM Sapuan ◽  
CM Ruzaidi ◽  
DS Nair ◽  
RA Ilyas

This paper aims to study the surface morphology, flammability and tensile properties of sugar palm fiber (SPF) hybrid with polyester (PET) yarn-reinforced epoxy composite with the addition of magnesium hydroxide (Mg(OH)2) as a flame retardant. The composites were prepared by hybridized epoxy and Mg(OH)2/PET with different amounts of SPF contents (0%, 20%, 35% and 50%) using the cold press method. Then these composites were tested by horizontal burning analysis, tensile strength testing and scanning electron microscopy (SEM) analysis. The specimen with 35% SPF (Epoxy/PET/SPF-35) with the incorporation of Mg(OH)2 as a flame retardant showed the lowest burning rate of 13.25 mm/min. The flame took a longer time to propagate along with the Epoxy/PET/SPF-35 specimen and at the same time producing char. Epoxy/PET/SPF-35 also had the highest tensile strength of 9.69 MPa. Tensile properties of the SPF hybrid with PET yarn (SPF/PET)-reinforced epoxy composite was decreased at 50% SPF content due to the lack of interfacial bonding between the fibers and matrix. Surface morphology analysis through SEM showed uniform distribution of the SPF and matrix with less adhesion, which increased the flammability and reduced the tensile properties of the hybrid polymeric composites. These composites have potential to be utilized in various applications, such as automotive components, building materials and in the aerospace industry.


2017 ◽  
Vol 48 (1) ◽  
pp. 87-118 ◽  
Author(s):  
MD Teli ◽  
Pintu Pandit

As far as the value addition of textile is concerned, flame retardancy of textile materials is considered to be one of the most important properties in textile finishing by both industries as well as academic researchers. Flame-retardant property with thermal stability was imparted to cotton by using green coconut ( Cocos nucifera Linn) shell extract, a natural waste source of coconut. Coconut shell extract was analyzed by high-performance liquid chromatography, Fourier transform infrared spectroscopy, energy-dispersive spectrometry and its phytochemical analysis was also carried out. The coconut shell extract (acidic after extraction) was applied in three different pH (acidic, neutral, and alkaline) conditions to the cotton fabric. Flame-retardant properties of the untreated and the treated cotton fabrics were analyzed by limiting oxygen index and vertical flammability. The study showed that all the treated fabrics had good flame resistance property compared to that of the untreated fabric. The limiting oxygen index value was found to increase by 72.2% after application of the coconut shell extract from alkaline pH. Pyrolysis and char formation behavior of the concerned fabrics were studied using thermogravimetric analysis and differential scanning calorimetric analysis in a nitrogen atmosphere. The physicochemical composition of the untreated and coconut shell extract treated cotton fabrics were analyzed by attenuated total reflection–Fourier transform infrared, scanning electron microscope, and energy-dispersive X-ray spectroscopy. Also, treated cotton fabric showed natural brown color and antibacterial property against both Gram-positive and Gram-negative bacteria. The durability of the flame-retardant functionality to washing with soap solution has also been studied and reported in this paper.


2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


2021 ◽  
Vol 9 (2) ◽  
pp. 157
Author(s):  
Syah Banu Putra Sitepu ◽  
Bambang Admadi Harsojuwono ◽  
Amna Hartiati

This research aims to determine the effect of the mixture and the ratio of the composites and their interactions to the characteristics of the bioplastic composites and to determine the mix and ratio of the composites that produce the best characteristics of the bioplastic composites. The experimental design of this study used a randomized block design method. Factor I is a mixture of composite materials consisting of maizena-glucomannan, maizena-chitosan, and maizena-carrageenan. The second factor is the ratio of the composite material mixture which consists of 5 levels, namely 100: 0, 75:25, 50:50, 25:75 and 0: 100. The experiment resulted in 15 treatment combinations and were grouped into 2 groups when the process of making bioplastic composites was obtained, so that 30 experimental units were obtained. Data were analyzed for their diversity and continued with Duncan's multiple comparison test. The observed variables which tensile strength, elongation at break, modulus young, swelling, and biodegradation time. The results showed that the mixture and the ratio of the composites forming a very significant effect on tensile strength, elongation at break, elasticity, and swelling. The interaction has a very significant effect on tensile strength, elasticity and swelling and significantly affects the elongation at break of bioplastic composites. Meanwhile, the mixture and the ratio of the ingredients to form the composites had no significant effect on the biodegradation time. Maizena:glucomannan composite with ratio (25:75) produced the best characteristics of bioplastic composites with tensile strength values of 6.99 MPa, elongation at break of 16.5%, elasticity 42.39 MPa, swelling 78.78% and biodegradable time of 7 days. There are 2 variables that have met the standard, namely: elongation at break of bioplastic composites that meet the plastic Standard SNI 7188.7: 2016 and biodegradation time has met the international plastic standard ASTM 5336 and 3 variables that do not meet the standards, namely: Tensile strength (6,99 MPa) and elasticity (42,39 MPa) do not meet the Plastic Standard SNI 7188.7: 2016 and swelling (39,1%) does not meet international plastic standards (EN 317). Keywords : bioplastic composites, maizena, glucomannan, chitosan, carrageenan


2013 ◽  
Vol 749 ◽  
pp. 65-70
Author(s):  
Xiao Yan Li ◽  
Yan Chun Li ◽  
Chen Jie Shi ◽  
Si Si Cai ◽  
Xia Wang ◽  
...  

A kind of intumescent flame retardant (IFR) were used for flame retarding of oil-extended hydrogenated styrene-butylenes-styrene (O-SEBS). The samples were systemically characterized by limited oxygen index (LOI), vertical burning test (UL-94), and scanning electron microscopy (SEM); Thermogravimetric (TG) analysis. The results showed that the IFR retardant can promote residual chars with multi-micro holes on the surface of SEBS to inhibit flame; with 45% IFR content, the LOI is 28.3 and flame retardant level is UL-94 classification of V-0, with no dripping. The morphological structures observed by SEM demonstrated that higher IFR content promote to form larger and compact films cover on bubbles of the intumescent char layer. The TG data revealed that the IFR could change the degradation behavior of the O-SEBS, enhance the thermal stability and increase the char residue, The tensile strength of all the O-SEBS/IFR blends had the tensile strength of more than 4MPa and the elongation of more than 850%.


2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040010
Author(s):  
Hsu-Chiang Kuan ◽  
Chin-Lung Chiang ◽  
Ming-Yuan Shen ◽  
Chen-Feng Kuan

In this study, we combine the coffee slag, metal powder with recycled petrochemical plastics (polystyrene, PS) to prepare circulation composite materials. It is an energy saving and carbon footprint reduction composite material compared with traditional one. The resulted PS/coffee composite has tensile strength 117.5 kgf/cm2 and flexural strength is 314.2 kgf/cm2. The heat deflection temperature (HDT) is 92[Formula: see text]C and the UV test fits the ASTM G154 requirement. The metal gross composite is with tensile strength 318.8 kgf/cm2 and flexural strength is 581.6 kgf/cm2. The HDT is 91[Formula: see text]C and the UV test fits the ASTM G154 requirement as well. Its reuse ratio can reach 85% for recycled PS. The resultant product has metal texture blinds with metal gross and wood-like blinds with coffee aroma flavor.


2020 ◽  
Vol 299 ◽  
pp. 94-99
Author(s):  
Vasily Ovchinnikov ◽  
Elena E. Mastalygina ◽  
Petr Pantyukhov

Polymer composite based on multilayer combined packaging wastes was prepared and investigated. The composite was made of tetrahedral package wastes, where cardboard part was removed. It was found that obtained composite material has blended polymer matrix that consists of low-density polyethylene, high-density polyethylene and polypropylene. Melting temperature of individual polymers in composite shifts to lower temperatures than that of the initial components. It is the evidence of destruction process or interaction between polymers. The hard particles of aluminum and cellulose are uniformly distributed in the composite. For that reason, these particles do not reduce melt fluidity significantly. The tensile strength and elasticity modulus are higher for the obtained material compared to pure polyethylene. The results show a high potential for the use of the developed composite material.


2021 ◽  
Vol 7 (1) ◽  
pp. 085-090
Author(s):  
Sujita Darmo Darmo ◽  
Rudy Sutanto Sutanto

Fibrous composite materials continue to be researched and developed with the long-term goal of becoming an alternative to metal substitutes. Due to the nature of the fiber reinforced composite material, its high tensile strength, and low density compared to metal. In general, the composition of the composite consists of reinforcing fibers and a matrix as the binding material. The potential of natural fibers as a reinforcing composite material is still being developed and investigated. The research that has been done aims to determine the characteristics of the tensile strength of the composite strengthened with Hibiscus tiliaceust bark powder (HTBP) with alkaline NaOH and KOH treatment. The reinforcing material used is HTBP and the matrix is polyester resin, with volume fraction of 5%, 10% and 20% with an alkaline treatment of 5% NaOH and 5% KOH with immersion for 2 hours, 4 hours, 6 hours and 8 hours. Tensile testing specimens and procedures refer to ASTM D3039 standard. The results of this study showed the highest tensile strength of 34.96 MPa in the alkaline treatment of 5% KOH, soaking time of 8 hours with a volume fraction of 10% and the lowest tensile strength of 21.96 MPa of 5% KOH alkaline treatment, soaking time of 6 hours with a volume fraction of 20%. .with 10% volume fraction of 34.96 MPa and the lowest tensile strength was 5% KOH alkaline treatment at 6 hours immersion with 20% volume fraction.


Sign in / Sign up

Export Citation Format

Share Document