Adsorption of 2-Methylisoborneol in Drinking Water by Different Granular Carbons

2011 ◽  
Vol 255-260 ◽  
pp. 2981-2986
Author(s):  
Xiao Yan Ma ◽  
Nai Yun Gao ◽  
Jun Li ◽  
Chen Chen

Three kinds of granular carbon made from different materials of coal, coconut shell and jujube seed were evaluated for adsorption of 2-methylisoborneol in drinking water by equilibrium isotherm simulation. Results showed that Freundlich isotherm can more suitable to describe the adsorption of these three kinds of carbon. For coal-based, coconut shell and jujube seed carbon, the largest adsorption capacity of 2-MIB were 2225.0,3152.8 and 1E-07(ng/g)(L/ng)n respectively in pure water, and in raw water they were 559.6,612.5 and 6E-28(ng/g)(L/ng)n respectively, about one-fifth of those in pure water. Among the selected carbons, coconut shell carbon had the largest adsorption capacity, followed by coal-based and jujube seed carbon which can hardly absorb 2-MIB.

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2933
Author(s):  
Edgar Pineda Puglla ◽  
Diana Guaya ◽  
Cristhian Tituana ◽  
Francisco Osorio ◽  
María J. García-Ruiz

This study reports the adsorption capacity of lead Pb2+ and cadmium Cd2+ of biochar obtained from: peanut shell (BCM), “chonta” pulp (BCH) and corn cob (BZM) calcined at 500, 600 and 700 °C, respectively. The optimal adsorbent dose, pH, maximum adsorption capacity and adsorption kinetics were evaluated. The biochar with the highest Pb2+ and Cd2+ removal capacity is obtained from the peanut shell (BCM) calcined at 565 °C in 45 min. The optimal experimental conditions were: 14 g L−1 (dose of sorbent) and pH between 5 and 7. The sorption experimental data were best fitted to the Freundlich isotherm model. High removal rates were obtained: 95.96% for Pb2+ and 99.05. for Cd2+. The BCH and BZM revealed lower efficiency of Pb2+ and Cd2+ removal than BCM biochar. The results suggest that biochar may be useful for the removal of heavy metals (Pb2+ and Cd2+) from drinking water.


2013 ◽  
Vol 13 (1) ◽  
pp. 50-58

Trihalomethanes are a major class of chlorination by-products in drinking water. They are formed when chlorine reacts with bromide (Br-) and natural organic matter (NOM) in source waters. Toxicology studies have shown all THMs to be carcinogenic or to cause adverse reproductive or developmental effects in laboratory animals. THMs are small volatile molecules, which are hydrophobic, non biodegradable and adsorbable on granular activated carbon (GAC). The objective of this pilot study is to evaluate the adsorption capacity for individual THMs of a GAC filter-adsorber (A) and a GAC postfilter-adsorber (B), both fed with chlorinated natural water. For this purpose, a GAC pilot plant was operated as a filter-adsorber and a postfilter-adsorber in Galatsi WTP, Athens (GTP) until the removal of individual THMs by GAC was eliminated (breakthrough). Regular sampling was performed during operation and the parameters measured were: THMs, DOC, free residual chlorine, bromide, turbidity, pH and temperature. From the experimental data, GAC bed life, GAC usage rate, GAC loading and operation time to breakthrough were calculated for most THMs. TBM was almost not detected. Some desorption of THMs, especially TCM and BDCM, was noticed during the operation of both adsorbers. Near breakthrough for THMs, equilibrium between adsorbed and dissolved THMs was considered to have been established. The GAC equilibrium loading of individual THMs was assumed to depend on the mean value of their influent concentration, which was not constant. By correlating the equilibrium data by linear regression to conform to the Freundlich isotherm, the Freundlich constants 1/n and k were determined for each of THMs. They are related to the physicochemical characteristics and background organics of water and the specific GAC used. The strength of the adsorption bond and the GAC capacity was higher for DBCM, lower for BDCM and even lower for TCM for both adsorbers. In addition, the GAC(B) capacity for BDCM and DBCM was higher than that of GAC(A), probably due to larger surface area and surface chemistry of GAC(B). Also, the lower particle size and the higher uniformity coefficient of GAC(B), along with the lower flow rate may have attributed to that by enhancing GAC equilibration. However, TCM was less adsorbed by GAC(B), probably due to the stronger competition effect by BDCM and DBCM, being in much higher mean influent concentration. The DOC content of influent water seems also to reduce significantly the adsorption of THMs (especially of TCM), as the comparison of our results with the isotherm results with distilleddeionized water by other researchers showed.


2019 ◽  
Vol 11 (1) ◽  
pp. 17-25
Author(s):  
Babatope Abimbola Olufemi ◽  
Anne Nlerum

The parametric statistical adsorption of chemically unmodified coconut shell powder (CSP) to adsorb iron (II) ions from aqueous solutions was examined in this work. It was observed that the adsorption capacity increased with increasing adsorbent dose, reducing adsorbate dose, increasing contact time, decreasing temperature and reducing particle size. As observed about one gram of the adsorbent was sufficient enough to remove 98 % iron (II) ions. A total contact time of about 40 minutes was sufficient for almost complete adsorption of the ions, while a pH of about 6.0 exhibited the maximum adsorption capacity. The sorption data were fitted into Langmuir, Freundlich, Temkin and the Dubinin-Radushkevich isotherms, fitted most with the Freundlich Isotherm model. The energy values obtained from the Temkin and Dubinin-Radushkevich isotherm model indicated high chemisorption phenomenon with the adsorbents. Investigation of some kinetic models confirmed that the adsorption of iron (II) ions using CSP was a pseudo-second order kinetic process, which further corroborates that chemisorption dominates the adsorption. Fourier Transform Analysis (FTIR) further established and justified the outcome of the study. The adsorption was parametrically justified statistically with Analysis of Variance (ANOVA) and Bonferroni-Holm Posthoc significance test. Conclusively, coconut shell proved strongly to be an effective and suitable adsorbent for removing iron (II) ions from aqueous solutions.


2002 ◽  
Vol 2 (3) ◽  
pp. 17-22
Author(s):  
A.P. Wyn-Jones ◽  
J. Watkins ◽  
C. Francis ◽  
M. Laverick ◽  
J. Sellwood

Two rural spring drinking water supplies were studied for their enteric virus levels. In one, serving about 30 dwellings, the water was chlorinated before distribution; in the other, which served a dairy and six dwellings the water was not treated. Samples of treated (40 l) and untreated (20 l) water were taken under normal and heavy rainfall conditions over a six weeks period and concentrated by adsorption/elution and organic flocculation. Infectious enterovirus in concentrates was detected in liquid culture and enumerated by plaque assay, both in BGM cells, and concentrates were also analysed by RT-PCR. Viruses were found in both raw water supplies. Rural supplies need to be analysed for viruses as well as bacterial and protozoan pathogens if the full microbial hazard is to be determined.


2006 ◽  
Vol 6 (2) ◽  
pp. 47-53 ◽  
Author(s):  
D. Simazaki ◽  
M. Asami ◽  
T. Nishimura ◽  
S. Kunikane ◽  
T. Aizawa ◽  
...  

Nationwide surveys of 1,4-dioxane and methyl-t-butyl ether (MTBE) levels in raw water used for the drinking water supply were conducted at 91 water treatment plants in Japan in 2001 and 2002, prior to the revision of the drinking water quality standards. 1,4-dioxane was widely and continuously detected in raw water samples and its occurrence was more frequent and its concentrations higher in groundwater than in surface water. However, its maximum concentration in raw water was much lower than its new standard value (50 μg/L), which was determined as a level of 10−5 excessive cancer risk to humans. Trace levels of MTBE were also detected in several surface water samples.


2007 ◽  
Vol 53 (6) ◽  
pp. 688-694 ◽  
Author(s):  
Annie Locas ◽  
Christine Barthe ◽  
Benoit Barbeau ◽  
Annie Carrière ◽  
Pierre Payment

A 1 year study was undertaken on groundwater that was a source of drinking water in the province of Quebec, Canada. Twelve municipal wells (raw water) were sampled monthly during a 1 year period, for a total of 160 samples. Using historic data, the 12 sites were categorized into 3 groups: group A (no known contamination), group B (sporadically contaminated by total coliforms), and group C (historic and continuous contamination by total coliforms and (or) fecal coliforms). Bacterial indicators (total coliform, Escherichia coli , enteroccoci), viral indicators (somatic and male-specific coliphages), total culturable human enteric viruses, and noroviruses were analyzed at every sampling site. Total coliforms were the best indicator of microbial degradation, and coliform bacteria were always present at the same time as human enteric viruses. Two samples contained human enteric viruses but no fecal pollution indicators (E. coli, enterococci, or coliphages), suggesting the limited value of these microorganisms in predicting the presence of human enteric viruses in groundwater. Our results underline the value of historic data in assessing the vulnerability of a well on the basis of raw water quality and in detecting degradation of the source. This project allowed us to characterize the microbiologic and virologic quality of groundwater used as municipal drinking water sources in Quebec.


2001 ◽  
Vol 19 (3) ◽  
pp. 197-210 ◽  
Author(s):  
A. Hashem ◽  
Reda M. El-Shishtawy

The factors influencing the cationization of microcrystalline cellulose with 3-chloro-2-hydroxypropyl triethylammonium chloride in the presence of NaOH were investigated. The course of the reaction was followed by estimating the nitrogen content of the cationized product while its structural features were confirmed by IR analysis. The ability of cationized cellulose to adsorb anionic dyes, viz. Acid Orange 7, Direct Blue 75 and Direct Violet 31, was investigated at 25°C and 50°C. The equilibrium data obtained were fitted by the Langmuir and Freundlich isotherm models, allowing the corresponding adsorption parameters to be determined. The results showed that the adsorption capacity was dependent on the adsorbent, temperature, the nature of the dye and (to some extent) on van der Waals and hydrogen bonding. Cationized cellulose exhibited a much better adsorption capacity towards anionic dyes than cellulose.


Nutrients ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 42 ◽  
Author(s):  
Li-Fang Chou ◽  
Ya-Lien Cheng ◽  
Chun-Yih Hsieh ◽  
Chan-Yu Lin ◽  
Huang-Yu Yang ◽  
...  

Autophagy impairment has been demonstrated in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD) and could be a new target of treatment. Trehalose is a natural, nonreducing disaccharide that has been shown to enhance autophagy. Therefore, we investigated whether trehalose treatment reduces renal cyst formation in a Pkd1-hypomorphic mouse model. Pkd1 miRNA transgenic (Pkd1 miR Tg) mice and wild-type littermates were given drinking water supplemented with 2% trehalose from postnatal day 35 to postnatal day 91. The control groups received pure water or 2% sucrose for the control of hyperosmolarity. The effect on kidney weights, cystic indices, renal function, cell proliferation, and autophagic activities was determined. We found that Pkd1 miR Tg mice had a significantly lower renal mRNA expression of autophagy-related genes, including atg5, atg12, ulk1, beclin1, and p62, compared with wild-type control mice. Furthermore, immunohistochemical analysis showed that cystic lining cells had strong positive staining for the p62 protein, indicating impaired degradation of the protein by the autophagy-lysosome pathway. However, trehalose treatment did not improve reduced autophagy activities, nor did it reduce relative kidney weights, plasma blood urea nitrogen levels, or cystatin C levels in Pkd1 miR Tg mice. Histomorphological analysis revealed no significant differences in the renal cyst index, fibrosis score, or proliferative score among trehalose-, sucrose-, and water-treated groups. Our results demonstrate that adding trehalose to drinking water does not modulate autophagy activities and renal cystogenesis in Pkd1-deficient mice, suggesting that an oral supplement of trehalose may not affect the progression of ADPKD.


2018 ◽  
Vol 10 (12) ◽  
pp. 4578 ◽  
Author(s):  
Yingjie Zhu ◽  
Xiaoli Du ◽  
Can Gao ◽  
Zhenya Yu

Inorganic and organic phosphate adsorption by iron–manganese (Fe–Mn) plaques extracted from reed roots was investigated. Scanning electron microscopy indicated the roots had rough surfaces and fine particles attached. X-ray photoelectron spectra indicated that Fe and Mn in the Fe–Mn plaques were mainly in the +III and +IV oxidation states, respectively. The contact time, initial phosphate concentration, and temperature effects on inorganic and organic phosphate adsorption were investigated by performing batch tests. Pseudo-second-order model described inorganic and organic phosphate adsorption, indicating the chemisorption was the dominant adsorption process. Langmuir and Freundlich isotherm models were fitted to the equilibrium data, and the Langmuir model fitted best. The maximum inorganic and organic phosphate adsorption capacities at 298 K were 7.69 and 3.66 mg/g, respectively. The inorganic and organic phosphate adsorption processes were spontaneous and exothermic. The inorganic phosphate adsorption capacity was higher than the organic phosphate adsorption capacity, and the presence of organic phosphate did not negatively affect adsorption at inorganic to organic phosphate molar ratios between 1:1 and 3:1. Fourier-transform infrared spectra before and after adsorption showed abundant functional groups on Fe–Mn plaques and that phosphate was probably adsorbed via replacement of hydroxyl groups and inner-sphere surface complexation.


2001 ◽  
Vol 1 (4) ◽  
pp. 237-245 ◽  
Author(s):  
V. Gauthier ◽  
B. Barbeau ◽  
R. Millette ◽  
J.-C. Block ◽  
M. Prévost

The concentrations of suspended particles were measured in the drinking water of two distribution systems, and the nature of these particles documented. The concentrations of particulate matter were invariably found to be small (maximum 350 μg/L). They are globally in the very low range in comparison with dissolved matter concentrations, which are measured in several hundreds of mg/L. Except during special water quality events, such as turnover of the raw water resource, results show that organic matter represents the most important fraction of suspended solids (from 40 to 76%) in treated and distributed water. Examination of the nature of the particles made it possible to develop several hypotheses about the type of particles penetrating Montreal's distribution system during the turnover period (algae skeleton, clays). These particles were found to have been transported throughout the distribution systems quite easily, and this could result in the accumulation of deposits if their surface charge were ever even slightly destabilised, or if the particles were to penetrate the laminar flow areas that are fairly typical of remote locations in distribution systems.


Sign in / Sign up

Export Citation Format

Share Document