Compare of Wear Properties and Analysis of Wear Mechanism about TC4 Alloy and P110 Tubing Steel in Dry Condition

2011 ◽  
Vol 314-316 ◽  
pp. 147-150
Author(s):  
Xiao Fei Yao ◽  
Fa Qin Xie ◽  
Guo Xian Zhao ◽  
Yong Han ◽  
Xiang Qing Wu

Using as high strength and corrosion resistance of tubing material, the wear properties of TC4 alloy and P110 tubing steel were comparatively studied, the differences and similarities were analyzed that are weight loss of wear rate and friction coefficient and topography of wear mark, the wear mechanism was discussed. The results showed that the topography of TC4 alloy and P110 tubing steel are different entirely, TC4 alloy is furrow, P110 tubing steel is wear pit, the wear resistance of P110 tubing steel is excelled obviously than TC4 alloy, the wear mechanism of TC4 alloy is delamination wear and adhesive wear and fatigue wear. The wear mechanism of P110 tubing steel is delamination wear and abrasive wear.

2021 ◽  
Vol 27 (1) ◽  
pp. 42-49
Author(s):  
Zhengang YANG ◽  
Wenping LIANG ◽  
Yanlin JIA ◽  
Qiang MIAO ◽  
Zheng DING ◽  
...  

A borocarburized layer was successfully fabricated on the surface of Q235 low-carbon steel via double glow treatment to improve the wear resistance at elevated temperature. The phase composition and microstructure of borocarburized layer were investigated by XRD and SEM. The microhardness of borocarburized layer from the surface to the substrate were detected. And the tribological behaviors of borocarburized layer and substrate were investigated under the dry-sliding against ZrO2 ball at three temperatures. The results indicate that the borocarburized layer consists of an outermost boride layer and a transition layer of carburized layer. The boride layer with main phase of Fe2B has a high hardness around 1700 HV, and the hardness of transition layer with main phase of Fe5C3 is around 600 HV. The novel gradient structure of an outermost boride layer and inner carburized layer is design in this research decreases the hardness mismatch of coating to prevent the boride layer peeling off. The friction coefficient and specific wear rate of borocarburized layer are much lower than that of substrate at the same temperature. In addition, the wear mechanism of substrate is mainly fatigue wear and slightly adhesive wear at 20℃. When the wear test performs at 200℃, the substrate wear mechanism is adhesive wear and fatigue wear. The wear mechanism of borocarburized layer is main abrasive wear at 20℃ and 200℃. And the wear mechanism of both substrate and borocarburized layer are main oxidation wear and adhesive wear at 500℃. The borocarburized layer effectively improves the wear resistance of low carbon steel due to the higher hardness and great thermal stability at high temperature.


2015 ◽  
Vol 817 ◽  
pp. 571-576
Author(s):  
Jun Tao Zou ◽  
Chan Wang ◽  
Yang Li ◽  
Xian Hui Wang ◽  
Shu Hua Liang

The effect of ambient temperature, materials state and lubrication condition on wear resistance of Cu10Al5Fe5Ni alloy was investigated. The wear surface morphology was characterized by a scanning electron microscope (SEM), and the wear mechanism was discussed as well. The results show that the friction coefficient of Cu10Al5Fe5Ni alloy increases and then decreases with increasing temperature. The wear rate of the Cu10Al5Fe5Ni alloy after solid solution and ageing treatment is less than that of the as-cast alloy, and the wear rate of Cu10Al5Fe5Ni alloy reduces dramatically from 5.31×10-5 mm3 / (m· N) into 1.80×10-6 mm3 / (m·N) after adding lubricating oil. At elevated temperature, the prior wear mechanism is the fatigue wear, accompanying by slight abrasive wear and adhesive wear for the aged Cu10Al5Fe5Ni alloy.


2007 ◽  
Vol 546-549 ◽  
pp. 745-748 ◽  
Author(s):  
Xun Hong Wang ◽  
Kuaishe Wang

Friction and wear behaviors have been studied between the untreated base material and the friction stir welds of 5052 aluminum alloy. To determine the wear mechanism surface microstructures of worn test samples were examined by scanning electron microscopy (SEM).Variation rule of wear-resistance property and coefficient of friction were investigated according to wear mass loss and moment of friction under different parameter condition. The results show that all of friction stir welds had lower coefficients of friction and higher wear resistance than base material. The abrasion loss of base material increased by six times when position pressure increased from 50N to 100N and the abrasion loss is as 10-20 times as that of friction stir welds. The value of friction-moment of friction stir welds is low and stable and abrasion principle had changed from grain abrasion to fatigue wear. Surface examination showed that adhesion and smearing was the main wear mechanism for friction stir welds.


2011 ◽  
Vol 399-401 ◽  
pp. 1063-1066
Author(s):  
Wei Tian ◽  
Fa Qin Xie ◽  
Xiao Fei Yao ◽  
Xue Hui Zhao

The wear property of TC4 alloy is focus of discussion for its being used in high strengthen and corrosion resistant of tubing material. In the present paper, the wear properties of TC4 alloy and G3 alloy tubing steel are investigated comparatively, the differences and similarities of the weight loss rate of wear, wear coefficient and topography of wear mark by the wear test and the topography analysis are analyzed, and then the wear mechanism is discussed. The result shows that the topography of wear mark of TC4 alloy is furrow morphology, but that of G3 alloy tubing steel is pit morphology. The wear resistant of G3 alloy tubing steel is obviously more excellent than that of TC4 alloy. The wear mechanism of TC4 alloy is exfoliation wear, adhesive wear and fatigue wear, and that of G3 alloy tubing steel is exfoliation wear and abrasive wear.


2018 ◽  
Vol 1145 ◽  
pp. 33-38
Author(s):  
Wei Hua Wang ◽  
Fa Qin Xie ◽  
Xiao Fei Yao ◽  
Xiang Qing Wu

In order to improve wear resistance surface on 0Cr18Ni9Ti stainless steel, Cu coating on the 0Cr18Ni9Ti stainless steel substrate was deposited by electroplating technology. The friction and wear properties of 0Cr18Ni9Ti stainless steel substrate and Cu coating were investigated contrastively. The morphologies of the wear scars were analyzed by scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS) and scanning probe microscope (SPM), and the wear mechanism was discussed. The results showed that the wear resistance of Cu coatings was significantly improved as compared to that of 0Cr18Ni9Ti stainless steel substrate. The wear scar of 0Cr18Ni9Ti stainless steel substrate showed flaking pit, and its wear mechanism were delamination and abrasive wear. In case of Cu coating, the wear scars showed morphology of plastic deformation caused by adherent copper debris being pressed, and its wear mechanism were delamination and fatigue wear.


2021 ◽  
pp. 089270572110079
Author(s):  
Victor E Ogbonna ◽  
Patricia I Popoola ◽  
Olawale M Popoola ◽  
Samson O Adeosun

In recent years, advancements on improving the mechanical and tribological properties of polyimide nanocomposites have remarkably increased, owing to the fact that polyimide nanocomposites exhibits lightweight, high strength, thermal stability as well as anti-wear and solvent resistance. The polyimide nanocomposites are described as material of polyimide matrix reinforced with certain volume or weight percent concentration of nanofillers. Researchers have demonstrated the importance of thermoplastic polyimide nanocomposites in mechanical, thermal, and tribological applications. However, the nanocomposites are reportedly facing interfacial adhesion issues and surface properties degradation, which have affected their mechanical, friction, and abrasive wear resistance for tribological applications. Although, much advancements on improving the mechanical, thermal, and wear resistance properties of polyimide nanocomposites has been reported. However, this review summarizes the effects of nanofillers, such as carbon nanotubes (CNTs), graphene (GN), graphene oxide (GO), boron nitride (BN), molybdenum disulfide (MoS2), silica (SiO2), titania (TiO2), alumina (Al2O3), carbon fibres (CF), aramid fibre (AF), glass fibre (GF), zinc dioxide (ZnO2), zirconium dioxide (ZrO2), silicon nitride (Si2N4), and carbon nitride (C3N4) on the mechanical, thermal, and wear properties of polyimide nanocomposites for tribological applications. The authors concluded the review study with advancement, challenges and suggestions for future improvement of polyimide nanocomposites as friction component material. Thus, the review offers an insight into the improvement and selection of polyimide nanocomposites material for mechanical, thermal, and tribological applications. More so, the review will also give away for further research.


Author(s):  
Shao Lifan ◽  
Ge Yuan ◽  
Kong Dejun

In order to improve the friction and wear properties of Cu10Al–MoS2 coating, the addition of CeO2 is one of the present research hot spots. In this work, Cu10Al–MoS2 coatings with different CeO2 mass fractions were successfully fabricated on Q235 steel using a laser cladding. The microstructure and phase compositions of obtained coatings were analyzed using an ultra-depth of field microscope and X-ray diffraction, respectively. The friction-wear test was carried out under oil lubrication using a ball-on-disk wear tester, and the effects of CeO2 mass fraction on the microstructure, hardness, and friction-wear properties were studied, and the wear mechanism was also discussed. The results show that the laser cladded Cu10Al–MoS2 coatings with the different CeO2 mass fractions were mainly composed of Cu9Al4, Cu, AlFe3, Ni, MoS2, and CeO2 phases. The Vickers-hardness (HV) of Cu10Al–8MoS2–3CeO2, Cu10Al–8MoS2–6CeO2, and Cu10Al–8MoS2–9CeO2 coatings was 418, 445, and 457 HV0.3, respectively, which indicates an increase in hardness with the increase of CeO2 mass fraction. The average coefficients of friction (COF) and wear rates decrease with the increase of CeO2 mass fraction, presenting the outstanding friction reduction and wear resistance performances. The wear mechanism of Cu10Al–MoS2 coatings is changed from abrasive wear with slight fatigue wear to abrasive wear with the increase of CeO2 mass fraction.


2010 ◽  
Vol 154-155 ◽  
pp. 1170-1177
Author(s):  
Yuan Fang Chen ◽  
Xiao Dong Peng ◽  
Jian Jun Hu ◽  
Hong Bin Xu ◽  
Chan Hao

Surface modification of 40Cr steel by high current pulsed electron beam has been investigated . The pulsed times of HCPEB was changed from 1 to 25 to prepare different specimens. Surface microstructures and section microstructures after HCPEB irradiation were detected by using metallurgical microscope, SEM and X-ray diffractometer. It is shown that crater defects were found on the surface after the irradiation of HCPEB and the density of craters will decrease with increasing pulses times. When treated by 27Kev accelerating voltage, with increasing pulse times, the particles located in surface layer were obviously refined .The surface roughness, hardness, wear properties and corrosion resistance were analyzed after irradiation of HCPEB. The wear resistance and corrosion resistance were obviously enhanced after 10 pulses treatment.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1456
Author(s):  
Qiang Wang ◽  
Runling Qian ◽  
Ju Yang ◽  
Wenjuan Niu ◽  
Liucheng Zhou ◽  
...  

In order to improve the wear resistance of 27SiMn steel substrate, Fe−based alloy coatings were prepared by laser cladding technology in the present study. In comparison to the conventional gravity powder feeding (GF) process, high−speed powder feeding (HF) process was used to prepare Fe−based alloy coating on 27SiMn steel substrate. The effect of diversified energy composition of powder materials on the microstructure and properties of coatings were systematically studied. X−ray diffractometer (XRD), optical microscope (OM) and scanning electron microscope (SEM) were used to analyze the phase structure and microstructure of Fe−based alloy coatings, and the hardness and tribological properties were measured by the microhardness tester and ball on disc wear tester, respectively. The results show that the microstructure of conventional gravity feeding (GF) coatings was composed of coarse columnar crystals. In comparison, owing to the diversification of energy composition, the microstructure of the high−speed powder feeding (HF) coatings consists of uniform and small grains. The total energy of the HF process was 75.5% of that of the GF process, proving that high−efficiency cladding can be achieved at lower laser energy. The refinement of the microstructure is beneficial to improve the hardness and wear resistance of the coating, and the hardness of the HF coating increased by 9.4% and the wear loss decreased to 80.5%, compared with the GF coating. The wear surface of the HF coating suffered less damage, and the wear mechanism was slightly adhesive wear. In contrast, wear was more serious in the GF coating, and the wear mechanism was transformed into severe adhesive wear.


Lubricants ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 65 ◽  
Author(s):  
Kaur ◽  
Ghadirinejad ◽  
Oskouei

The need for metallic biomaterials will always remain high with their growing demand in joint replacement in the aging population. This creates need for the market and researchers to focus on the development and advancement of the biometals. Desirable characteristics such as excellent biocompatibility, high strength, comparable elastic modulus with bones, good corrosion resistance, and high wear resistance are the significant issues to address for medical implants, particularly load-bearing orthopedic implants. The widespread use of titanium alloys in biomedical implants create a big demand to identify and assess the behavior and performance of these alloys when used in the human body. Being the most commonly used metal alloy in the fabrication of medical implants, mainly because of its good biocompatibility and corrosion resistance together with its high strength to weight ratio, the tribological behavior of these alloys have always been an important subject for study. Titanium alloys with improved wear resistance will of course enhance the longevity of implants in the body. In this paper, tribological performance of titanium alloys (medical grades) is reviewed. Various methods of surface modifications employed for titanium alloys are also discussed in the context of wear behavior.


Sign in / Sign up

Export Citation Format

Share Document