Mechanical Performance and Fracture of 3-Ply Cu/Al/Cu Clad Metals

2012 ◽  
Vol 557-559 ◽  
pp. 23-27 ◽  
Author(s):  
In Kyu Kim ◽  
Jong Su Ha ◽  
Sun Ig Hong

The mechanical performance and fracture of roll-bonded Cu/Al/Cu clad metal were investigated after heat treatment in the temperature range 200~500OC. In the roll-bonded 3-ply Cu/Al/Cu clad metal, no visible interfacial reaction compound and defects were observed at the interfaces, ensuring the well-bonded Cu/Al interface until the final moment of fracture in tension. The reaction layer was observed at the Cu/Al interface after annealing at and above 400OC, which deteriorated the ductility of clad metals. The thickness of the reaction layer increased with increasing heat treatment temperature. The periodic cracks were formed perpendicular to the tensile direction due to the strain mismatch between metal layers and the reaction compound layer in the clad heat treated at high temperatures at 500oC. The slip localization and delamination induced premature crack formation in Cu and Al layer, resulting in the decreased clad metal fracture strain, especially after heat treating at 500oC.

2012 ◽  
Vol 557-559 ◽  
pp. 385-389 ◽  
Author(s):  
Jong Su Ha ◽  
In Kyu Kim ◽  
Sun Ig Hong

In this study Ti/Cu-Cr/S20C were clad by High Press Torsioning(HPT) and the effect of post-HPT heat treatment on the interfacial reaction products and the mechanical performance in Ti/CuCr/S20C clad material were studied. No cracks were observed to be emanated from the corner of the indentation mark on the intremetallic compound layer at the Ti/Cu-Cr interface, suggesting those intermetallic compounds is not so brittle. The stress-strain curves exhibited three steps in as-HPTed clad samples and those heat-treated at 500°C for 1hr. Step-wise fracture occurred in the sequence of S20C, Cu-Cr and Ti with each fracture resulting in the sudden drop of the stress. The stress-strain curves exhibited two steps in clad metals annealed at 600°C for 1hr, with first step corresponding to the fracture of S20C plate and the second one corresponding to the concurrent fracture of Ti and Cu-Cr plates. Ti/Cu-Cr/S20C heat-treated at 600°C for 24hrs exhibited just one step final fracture, suggesting that the bonding strengths are high enough to resist the localized strain concentration at the interfaces.


2014 ◽  
Vol 951 ◽  
pp. 87-91 ◽  
Author(s):  
Won Nyeon Kim ◽  
Sun Ig Hong

The mechanical properties and microstructure of layered Cu/Al/Cu composites was investigated after annealing at various temperatures. The nature of intermetallic compounds in roll-bonded Cu/Al/Cu clad metals after heat treatment was investigated using SEM, XRD and EBSD.in the temperature range 200~500oC. In the roll-bonded 3-ply Cu/Al/Cu clad metal, no visible interfacial reaction compound and defects were observed at the interfaces. The reaction layer was observed grow rapidly at the Cu/Al interface after annealing at and above 400oC, which deteriorated the ductility of clad metals. Intermetallic reaction layers of Cu/Al/Cu clad materials annealed at 500oC for 3, 5, 10hours was found to consist of three layers, CuAl2, CuAl and Cu9Al4. EBSD analyses revealed that intermetallic layers are polycrystalline. The drastic decrease of stress and elongation in Cu/Al/Cu clad composite annealed at 500oC can be linked to the interfacial cracks between Al and Cu layer.


2013 ◽  
Vol 376 ◽  
pp. 284-287 ◽  
Author(s):  
In Kyu Kim ◽  
Sun Ig Hong

The interface cracking and fracture behaviors of as-roll-bonded and heat-treated 3-ply Cu/Al/Cu clad metal were investigated Interfacial intermetallic layer were observed to be formed at the Cu/Al interface upon annealing at and above 300°C. The presence of Cu9Al4, CuAl, Cu3Al2 and CuAl2 at the Cu/Al interface was confirmed by XRD. The intermetallic reaction layer has a detrimental effect on the bonding strength of the Cu/Al/Cu clad metal, inducing interface cracks. The length of the delaminated region increased with increasing heat treatment temperature. No strain incompatibility and cracks were observed across the interface in the as roll-bonded clad composite and, for annealed clad composites at 300°C, some appreciable strain incompatibiliy developed, starting to form interface microcracks. For annealed clad composites at 450°C, the interface crack opened wide up with strain because the separated Cu and Al plate deform, developing their independent necks and fracture independently.


2012 ◽  
Vol 625 ◽  
pp. 323-327
Author(s):  
Jun Young Song ◽  
Jong Su Ha ◽  
In Kyu Kim ◽  
Sun Ig Hong

Ti/Cu-8Ag/S20C composite were processed by High Press Torsioning(HPT) and the effect of post-HPT heat treatment on the interfacial reaction products and the mechanical performance were studied. Intremetallic compound layer with the thickness of 11 μm was observed at the interface between Ti and Cu-8Ag for the clad heat-treated at 600°Cfor 24hrs. On the other hand, no intermetallic compounds were observed at the Cu-8Ag/S20C interface. No cracks were observed to be emanated from the corner of the indentation mark on the intremetallic compound layer at the Ti/Cu-8Ag interface, suggesting those intermetallic compounds is not so brittle. The stress-strain curves exhibited two steps in as-HPTed clad samples and those heat-treated at 600°C for 24hrs. The careful examination of the fractured plates revealed that S20C plate fractured first and then Ti and Cu-8Ag layers fractured together, suggesting the bonding strength between two layers is fairly high in the presence of intermetallic layer between Ti and Cu-8Ag layers


2019 ◽  
Vol 63 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Prasad U. Syam ◽  
V. V. Kondaiah ◽  
K. Akhil ◽  
V. Vijay Kumar ◽  
B. Nagamani ◽  
...  

Abstract Magnesium and its alloys are now attracting a great attention as promising materials for several light weight engineering applications. ZE41 is a new Mg alloy contains Zinc, Zirconium and Rare Earth elements as the important alloying elements and is widely used in aerospace applications. In the present study, heat treatment has been carried out at two different temperatures (300 and 335 °C) to assess the effect of heat treatment on microstructure and corrosion behavior of ZE41 Mg alloy. The grain size was observed as almost similar for the unprocessed and heat treated samples. Decreased amount of secondary phase (MgZn2) was observed after heat treating at 300 °C and increased intermetallic phase (Mg7Zn3) and higher number of twins appeared for the samples heat treated at 335 °C. Microhardness measurements showed increased hardness after heat treating at 300 °C and decreased hardness after heat treating at 335 °C which can be attributed to the presence of higher supersaturated grains after heat treating at 300 °C. The samples heat treated at 335 °C exhibited better corrosion resistance compared to those of base materials and samples heat treated at 300 °C. From the results, it can be understood that the selection of heat treatment temperature is crucial that depends on the requirement i.e. to improve the microhardness or at the loss of microhardness to improve the corrosion resistance of ZE41 Mg alloy.


2013 ◽  
Vol 813 ◽  
pp. 104-107
Author(s):  
Ju Young Jin ◽  
In Kyu Kim ◽  
Sun Ig Hong

In this study, roll-bonded Al/STS clad was heat-treated at various temperature (200-600 °C) for 1hour and then their mechanical performance and interfacial structure was studied. To estimate the mechanical properties of heat-treated clad materials at various temperatures, the tension tests were performed. For Al/STS clad heat-treated from 200 °C to 500 °C, no interfacial reaction layer was observed. Brittle intermetallic layer was observed between Al and STS, which induced the interface crack due to the large mismatch of the thermal expansion coefficient between two metal plates. XRD peaks from the interface region indicate the presence of Al2Fe, Al5Fe and Al13Cr2 in addition to Fe, Cr, Al and Mn. The UTS of Al/STS sheet was observed to follow the rule of mixture. One noticeable observation from stress-strain responses is that the fracture strain of Al/STS clad sheet increased markedly more than that of Al clad sheet by the increasing heat treatment temperature.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Xiaoyu Wu ◽  
Shufeng Xie ◽  
Kangwei Xu ◽  
Lei Huang ◽  
Daling Wei ◽  
...  

Burning loss of graphene in the high-temperature plasma-spraying process is a critical issue, significantly limiting the remarkable performance improvement in graphene reinforced ceramic coatings. Here, we reported an effective approach to enhance the graphene retention, and thus improve the performance of plasma-sprayed alumina/graphene nanoplatelets (Al2O3/GNPs) coatings by heat treatment of agglomerated Al2O3/GNPs powders. The effect of powder heat treatment on the microstructure, GNPs retention, and electrical conductivity of Al2O3/GNPs coatings were systematically investigated. The results indicated that, with the increase in the powder heat treatment temperature, the plasma-sprayed Al2O3/GNPs coatings exhibited decreased porosity and improved adhesive strength. Thermogravimetric analysis and Raman spectra results indicated that increased GNPs retention from 12.9% to 28.4%, and further to 37.4%, as well as decreased structural defects, were obtained for the AG, AG850, and AG1280 coatings, respectively, which were fabricated by using AG powders without heat treatment, powders heat-treated at 850 °C, and powders heat-treated at 1280 °C. Moreover, the electrical conductivities of AG, AG850, and AG1280 coatings exhibited 3 orders, 4 orders, and 7 orders of magnitude higher than that of Al2O3 coating, respectively. Powder heat treatment is considered to increase the melting degree of agglomerated alumina particles, eventually leaving less thermal energy for GNPs to burn; thus, a high retention amount and structural integrity of GNPs and significantly enhanced electrical conductivity were achieved for the plasma-sprayed Al2O3/GNPs coatings.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1264
Author(s):  
Teng-Chun Yang ◽  
Tung-Lin Wu ◽  
Chin-Hao Yeh

The influence of heat treatment on the physico-mechanical properties, water resistance, and creep behavior of moso bamboo (Phyllostachys pubescens) was determined in this study. The results revealed that the density, moisture content, and flexural properties showed negative relationships with the heat treatment temperature, while an improvement in the dimensional stability (anti-swelling efficiency and anti-water absorption efficiency) of heat-treated samples was observed during water absorption tests. Additionally, the creep master curves of the untreated and heat-treated samples were successfully constructed using the stepped isostress method (SSM) at a series of elevated stresses. Furthermore, the SSM-predicted creep compliance curves fit well with the 90-day full-scale experimental data. When the heat treatment temperature increased to 180 °C, the degradation ratio of the creep resistance (rd) significantly increased over all periods. However, the rd of the tested bamboo decreased as the heat treatment temperature increased up to 220 °C.


2013 ◽  
Vol 747-748 ◽  
pp. 497-501
Author(s):  
Na Liu ◽  
Zhou Li ◽  
Guo Qing Zhang ◽  
Hua Yuan ◽  
Wen Yong Xu ◽  
...  

Powder metallurgical TiAl alloy was fabricated by gas atomization powders, and the effect of heat treatment temperature on the microstructure evolution and room tensile properties of PM TiAl alloy was investigated. The uniform fine duplex microstructure was formed in PM TiAl based alloy after being heat treated at 1250/2h followed by furnace cooling (FC)+ 900/6h (FC). When the first step heat treatment temperature was improved to 1360/1h, the near lamellar microstructure was achieved. The ductility of the alloy after heat treatment improved markedly to 1.2% and 0.6%, but the tensile strength decreased to 570MPa and 600MPa compared to 655MPa of as-HIP TiAl alloy. Post heat treatment at the higher temperature in the alpha plus gamma field would regenerate thermally induced porosity (TIP).


2016 ◽  
Vol 97 ◽  
pp. 141-146 ◽  
Author(s):  
Taywin Buasri ◽  
Hyunbo Shim ◽  
Masaki Tahara ◽  
Tomonari Inamura ◽  
Kenji Goto ◽  
...  

The effect of heat treatment temperature from 1173 K to 1373 K for 3.6 ks on mechanical and superelastic properties of an Ni-free Au-51Ti-18Co alloy (mol%) was investigated. The stress for inducing martensitic transformation (SIMT) and the critical stress for slip deformation (CSS) slightly decrease with increasing the heat–treatment temperature. Regardless of heat–treatment temperature, good superelasticity was definitely recognized with the maximum shape recovery ratio up to 95 % and 4 % superelastic shape recovery strain. As the mentioned reasons, the Au-51Ti-18Co alloy is promising for practical biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document