The Calculation of Kinetic Parameters in Manganese Nitriding

2010 ◽  
Vol 97-101 ◽  
pp. 737-742 ◽  
Author(s):  
Jin Zhu Zhang ◽  
Shui Hui Luo ◽  
Chu Shao Xu

The present work confirmed and achieved the relevant parameters which belong to the manganese nitriding model via experiments. Based on the metallic iron nitriding model and the nitride layer growth model, metal manganese nitrding model was set up. The change laws between the kinetic parameters and temperature of the solid metal manganese nitriding model was studied by using the optimum method. The experimental results showed that the ratio of weight gain for samples relatively increased with the increasing of nitriding temperature, and the results obtained from the numerical model indicated that the kinetic parameters of manganese nitriding model increased with the increasing of nitriding temperature.

Aerospace ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 138
Author(s):  
Giuseppe Gallo ◽  
Adriano Isoldi ◽  
Dario Del Gatto ◽  
Raffaele Savino ◽  
Amedeo Capozzoli ◽  
...  

The present work is focused on a detailed description of an in-house, particle-in-cell code developed by the authors, whose main aim is to perform highly accurate plasma simulations on an off-the-shelf computing platform in a relatively short computational time, despite the large number of macro-particles employed in the computation. A smart strategy to set up the code is proposed, and in particular, the parallel calculation in GPU is explored as a possible solution for the reduction in computing time. An application on a Hall-effect thruster is shown to validate the PIC numerical model and to highlight the strengths of introducing highly accurate schemes for the electric field interpolation and the macroparticle trajectory integration in the time. A further application on a helicon double-layer thruster is presented, in which the particle-in-cell (PIC) code is used as a fast tool to analyze the performance of these specific electric motors.


Author(s):  
Jayaram R. Pothnis ◽  
Dinesh Kalyanasundaram ◽  
Suhasini Gururaja

Numerical and experimental studies performed to develop nanocomposites with varying carbon nanotube (CNT) alignment density within an epoxy matrix are presented. A 3-D numerical model has been developed that looks at the behavior of CNTs in epoxy resin subjected to non-uniform electric fields by explicitly accounting for electric field coupled with fluid flow and particle motion considering the transient resin viscosity. The transient nature of resin viscosity has been incorporated into the simulation study with data related to resin viscosity variation with time and temperature generated experimentally. The response of CNTs due to the induced dielectrophoretic force was studied using the numerical model. The model facilitated the design of an optimal electrode configuration for the processing of variable density composites. A computer controlled Arduino UNO based circuitry was developed to control supply of voltage to the electrodes during sample fabrication. The circuit was then integrated with AC voltage supply units and the electrode set-up for fabricating the variable density composite samples. Low weight fractions of CNTs (0.05 wt.% and 0.1 wt.%) in epoxy resin were used for the experimental work and preliminary experimental studies were conducted. Electrical characterization results of the variable density nanocomposites indicate over 100% and 30% increase in electrical resistance measured across sample widths in 0.05 wt.% and 0.1 wt.% CNT samples, respectively. The measured sample resistance values confirmed that variation in CNT alignment density was achieved across the samples.


2011 ◽  
Vol 189-193 ◽  
pp. 2181-2184
Author(s):  
Heng Zhang ◽  
Xiao Ming Qian ◽  
Zhi Min Lu ◽  
Yuan Bai

The functions of hydroentangled nonwovens are determined by the degree of the fiber entanglement, which depend mainly on parameters of the water jet. According to the spun lacing technology, this paper set up the numerical model based on the simplified water jetting model, establishing the governing equations, and the blended two-phase flow as the multiphase flow model. This paper simulation the water needle after the water jetting from the water needle plate in the different pressure (100bar, 60bar, 45bar, 35bar).


2014 ◽  
Vol 13 ◽  
pp. 04022
Author(s):  
A. Triwiyanto ◽  
A. Zainuddin ◽  
K.A.Z Abidin ◽  
M.A Billah ◽  
P. Hussain

2010 ◽  
Vol 1276 ◽  
Author(s):  
José G. Miranda-Hernández ◽  
Elizabeth Refugio-Garcia ◽  
Elizabeth Garfias-García ◽  
Enrique Rocha-Rangel

AbstractThe synthesis of Al2O3-based functional materials having 10 vol. % of fine aluminum or titanium and aluminum-disperse or titanium-dispersed nitride hardened-particles has been explored. Two experimental steps have been set for the synthesis; specifically, sintering of Al2O3-aluminum or Al2O3-titanium powders which were thoroughly mixed under high energy ball-milling, pressureless-sintered at 1400°C during 1 h in argon atmosphere and then for the second step it was induced formation of aluminum nitride or titanium nitride at 500°C during different times (24, 72 and 120 h) by a nitriding process via immersion in ammoniac salts. SEM analyses of the microstructures obtained in nitride bodies were performed in order to know the effect of the ammoniac salts used as nitrating on the microstructure of aluminum or titanium for each studied functional material. It was observed that an aluminum nitride or titanium nitride layer growth from the surface into the bulk and reaches different depth as the nitriding time of the functional material was increased. The use of aluminum or titanium significantly enhanced density level and hardness of the functional materials.


2004 ◽  
Vol 19 (4) ◽  
pp. 1093-1104 ◽  
Author(s):  
Q. Luo ◽  
D.B. Lewis ◽  
P.Eh. Hovsepian ◽  
W-D. Münz

Cubic NaCl-B1 structured multilayer TiAlN/VN with a bi-layer thickness of approximately 3 nm and atomic ratios of (Ti+Al)/V = 0.98 to 1.15 and Ti/V = 0.55 to 0.61 were deposited by unbalanced magnetron sputtering at substrate bias voltages between -75 and -150 V. In this paper, detailed transmission electron microscopy and x-ray diffraction revealed pronounced microstructure changes depending on the bias. At the bias -75 V, TiAlN/VN followed a layer growth model led by a strong (110) texture to form a T-type structure in the Thornton structure model of thin films, which resulted in a rough growth front, dense columnar structure with inter-column voids, and low compressive stress of -3.8 GPa. At higher biases, the coatings showed a typical Type-II structure following the strain energy growth model, characterized by the columnar structure, void-free column boundaries, smooth surface, a predominant (111) texture, and high residual stresses between -8 and -11.5 GPa.


Author(s):  
Syed Sohail Akhtar ◽  
Abul Fazal M. Arif

One of the utmost challenges of hot aluminum extrusion is to design the die cavities with sharp corners (used to extrude thin-walled profiles) by considering the effective nitriding surface treatment of the die bearing surface in terms of nitride layer uniformity. In the present study, various AISI H13 steel samples (having commonly used profile geometric features) are manufactured using wire electro-discharge machining (EDM) and subsequently nitrided using two-stage controlled nitriding treatment. As a special case, corner features are investigated in terms of compound and nitride layers formation using optical and scanning electron microscopes. Finite element (FE) code abaqus is used to simulate the nitriding process using mass diffusion analysis in line with experimental set up. Both experimental and numerical results are found in close agreement in terms of nitrogen concentration and corresponding microhardness profiles. Some design modifications are implemented in FE code for corner profile features for uniform nitride layer development. In view of the current results, some design guidelines are suggested for effective and uniform nitride layer formation in order to secure high quality extruded product and extended die life.


Sign in / Sign up

Export Citation Format

Share Document