Quality Improvement and Characteristics of Polyhydroxyalkanoates (PHAs) and Natural Latex Rubber Blends

2013 ◽  
Vol 334-335 ◽  
pp. 49-54 ◽  
Author(s):  
Pakawadee Kaewkannetra ◽  
Sarunya Promkotra

Biopolymers of hard, brittle and low flexible polyhydroxyalkanoates (PHAs) and a soft and high elastic natural-latex rubber are blended at room temperature by using a combination technique. Concentrations of the PHAs solution are constituted at 1%, 2% and 3% w/v and mingled with fresh natural latex in different ratios (PHAs : Latex Rubber = 0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1 and 10:0). After vigorous blending, forming polymeric sheets leave a dried-film pattern. Only the best 3 different ratios (4:6, 5:5 and 6:4) are selected by evaluating morphological-based information. These lead to actually define and characterize for their morphological and mechanical properties. The morphological attributes are exemplified by polarized optical microscopy and X-ray diffractometry (XRD) while the thermal characterization is determined by differential scanning calorimetry (DSC). Morphological analysis for the criterion of blending achievement indicated that there is a significant relationship among porosity, texture and shrinkage. The porosity shows obviously low to high for gradually increasing PHAs and decreasing the latex. Thus, dense texture and shrinkage relate to blending compositions between PHAs and latex. The XRD and DSC reveal certain aspects of decreasing crystallinity arising from enhancing of the latex content. A high degree of crystallinity and melting temperature relates to greater PHAs ratio. The mechanical investigations have revealed complex localization patterns of tensile strength and elastic modulus. The more PHAs concentration at 2% w/v indicates the greater elastic modulus than 3% and 1% w/v. Significant differences are found on polymeric composites of mechanical analyses between PHAs and natural latex. The constituted superiority in the ratio of 5:5 significantly differs in extension to break. Additionally, both tensile strength and elastic modulus of 2% w/v PHAs present the maximum value among them.

1999 ◽  
Vol 72 (4) ◽  
pp. 587-601 ◽  
Author(s):  
Zoran S. Petrović ◽  
Ivan Javni ◽  
Jonathan Shull ◽  
Alan Waddon

Abstract A polyester urethane elastomer is blended with rigid poly(vinyl chloride) (PVC) and the miscibility of the components studied over the entire range of compositions. The polyurethane elastomer was a block copolymer with a low degree of crystallinity, while PVC was practically amorphous. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA) methods showed that polyester urethanes were partially miscible with PVC since two distinct glass transitions, which changed with the change of concentration of components, were observed. Although the PVC content was varied from 0–100%, the aim of the work was to examine if PVC at low concentrations would form fibrils in the urethane matrix and act as a reinforcing agent for the polyurethane elastomer. The morphology of the blends was studied by scanning electron microscopy and x-ray scattering. The blends were then spun into fibers to force the dispersed phase to elongate and form fibrils (draw ratio was about 100). A high degree of miscibility is obtained at low concentration of either of the components. The PVC phase in fibers spun from the blends have higher glass-transition temperature (Tg) than in isotropic blends, presumably due to increased orientation. No fibrillation of the rigid phase in the elastomeric matrix could be observed. The fibers displayed higher strengths but lower elongation at break than the isotropic blends of the same composition. Intermeshing morphology (at about 50/50 concentration) gave the lowest strengths.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Ming Yee Tan ◽  
Hoo Tien Nicholas Kuan ◽  
Meng Chuen Lee

Effect of alkali treatment on ground coffee waste/oxobiodegradable HDPE (GCW/oxo-HDPE) composites was evaluated using 5%, 10%, 15%, and 20% volume fraction of GCW. The composites were characterized using structural (Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM)), thermal (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)), mechanical (tensile and impact test) properties, and water absorption. FTIR spectrum indicated the eradication of lipids, hemicellulose, lignin, and impurities after the treatments lead to an improvement of the filler/matrix interface adhesion. This is confirmed by SEM results. Degree of crystallinity index was increased by 5% after the treatment. Thermal stability for both untreated and treated GCW composites was alike. Optimum tensile result was achieved when using 10% volume fraction with enhancement of 25% for tensile strength and 24% for tensile modulus compared to untreated composite. Specific tensile strength and modulus had improved as the composite has lower density. The highest impact properties were achieved when using 15% volume fraction that lead to an improvement of 6%. Treated GCW composites show better water resistance with 57% improvement compared to the untreated ones. This lightweight and ecofriendly biocomposite has the potential in packaging, internal automotive parts, lightweight furniture, and other composite engineering applications.


2018 ◽  
Vol 9 ◽  
pp. 364-378 ◽  
Author(s):  
Mikhail F Butman ◽  
Nikolay L Ovchinnikov ◽  
Nikita S Karasev ◽  
Nataliya E Kochkina ◽  
Alexander V Agafonov ◽  
...  

We report on a new approach for the synthesis of TiO2-pillared montmorillonite, where the pillars exhibit a high degree of crystallinity (nanocrystals) representing a mixture of anatase and rutile phases. The structures exhibit improved adsorption and photocatalytic activity as a result of hydrothermally activated intercalation of titanium polyhydroxo complexes (i.e., TiCl4 hydrolysis products) in a solution with a concentration close to the sol formation limit. The materials, produced at various annealing temperatures from the intercalated samples, were characterized by infrared spectroscopy, differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA), X-ray diffraction, dynamic light scattering (DLS) measurements, and liquefied nitrogen adsorption/desorption. The photocatalytic activity of the TiO2-pillared materials was studied using the degradation of anionic (methyl orange, MO) and cationic (rhodamine B, RhB) dyes in water under UV irradiation. The combined effect of adsorption and photocatalysis resulted in removal of 100% MO and 97.5% RhB (with an initial concentration of 40 mg/L and a photocatalyst-sorbent concentration of 1 g/L) in about 100 minutes. The produced TiO2-pillared montmorillonite showed increased photocatalytic activity as compared to the commercially available photocatalyst Degussa P25.


2020 ◽  
Vol 44 (5) ◽  
pp. 1430-1444
Author(s):  
Xiliang LIU ◽  
Shaomin FENG ◽  
Xin WANG ◽  
Jin QI ◽  
Dong LEI ◽  
...  

Polydioxanone (PPDO) is synthesized by ring-opening polymerization of p-dioxanone, using stannous octoate as the catalyst. The polarized optical micrograph (POM) shows thes pherulite growth rate of PPDO decreases with an increase in the isothermal crystallization temperature. PPDO is compression-molded into bars, and PPDO bars are subjected to isothermal annealing at a range of temperatures (Ta = 50, 60, 70, 80, 90, and 100 °C), and correspond to three different annealing times (ta = 1h, 2h, 3h). The effect on PPDO is investigated by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). With an increase in Ta and ta, the grain size and the degree of crystallinity also increase. Meanwhile, the tensile strength is significantly improved. The PPDO bars (90 °C, 2 h) reach the maximum crystallinity (57.21%) and the maximum tensile strength (41.1 MPa). Interestingly, the heat treatment process does not result in serious thermal degradation. It is observed that the hydrolytic degradation of the annealed PPDO is delayed to some extent. Thus, annealed PPDO might have potential applications, particularly in the fields of orthopedic fixation and tissue engineering.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Budi Arifvianto ◽  
Yuris Bahadur Wirawan ◽  
Urip Agus Salim ◽  
Suyitno Suyitno ◽  
Muslim Mahardika

Purpose The purpose of this study is to investigate the influences of extruder temperatures and raster orientations on the mechanical properties of polylactic-acid (PLA) material processed by using fused filament fabrication (FFF). Design/methodology/approach In this research, the PLA specimens were first printed with nozzle or extruder temperatures of 205°C, 215°C and 225°C and then evaluated in terms of their physical, chemical and mechanical properties. An appropriate extruder temperature was then selected based on this experiment and used for the printing of the other PLA specimens having various raster orientations. A series of tensile tests were carried out again to investigate the influence of raster orientations on the tensile strength, tensile strain and elastic modulus of those FFF-processed PLA materials. In the end, the one-way ANOVA was applied for the statistical analysis and the Mohr’s circle was established to aid in the analysis of the data obtained in this experiment. Findings The result of this study shows that the chemistry, porosity, degree of crystallinity and mechanical properties (tensile strength, strain and elastic modulus) of the PLA material printed with a raster angle of 0° were all insensitive to the increasing extruder temperature from 205°C to 225°C. Meanwhile, the mechanical properties of such printed PLA material were obviously influenced by its raster orientation. In this case, a PLA material with a raster orientation parallel to its loading axis, i.e. those with a raster angle of θ = 0°, was found as the strongest material. Meanwhile, the raster configuration-oriented perpendicular to its loading axis or θ = 90° yielded the weakest PLA material. The results of the tensile tests for the PLA material printed with bidirectional raster orientations, i.e. θ = 0°/90° and 45°/−45° demonstrated their strengths with values falling between those of the materials having unidirectional raster θ = 0° and 90°. Furthermore, the result of the analysis by using a well-known Mohr’s circle confirmed the experimental tensile strengths and the failure mechanisms of the PLA material that had been printed with various raster orientations. Originality/value This study presented consistent results on the chemistry, physical, degree of crystallinity and mechanical properties of the FFF-processed PLA in responding to the increasing extruder temperature from 205°C to 225°C applied during the printing process. Unlike the results of the previous studies, all these properties were also found to be insensitive to the increase of extruder temperature. Also, the result of this research demonstrates the usability of Mohr’s circle in the analysis of stresses working on an FFF-processed PLA material in responding to the changes in raster orientation printed in this material.


2018 ◽  
Vol 24 (4) ◽  
pp. 731-738 ◽  
Author(s):  
Hanxiao Wang ◽  
Marco Domingos ◽  
Fabio Scenini

Purpose The purpose of this paper is to study the effect of nano hydroxyapatite (HA) and graphene oxide (GO) particles on thermal and mechanical performances of 3D printed poly(ε-caprolactone) (PCL) filaments used in bone tissue engineering (BTE). Design/methodology/approach Raw materials were prepared by melt blending, followed by 3D printing via 3D Discovery (regenHU Ltd., CH) with all fabricating parameters kept constant. Filaments, including pure PCL, PCL/HA and PCL/GO, were tested under the same conditions. Several techniques were used to mechanically, thermally and microstructurally evaluate properties of these filaments, including differential scanning calorimetry, tensile test, nano indentation and scanning electron microscope. Findings Results show that both HA and GO nano particles are capable of improving mechanical performance of PCL. Enhanced mechanical properties of PCL/HA result from reinforcing effect of HA, while a different mechanism is observed in PCL/GO, where degree of crystallinity plays an important role. In addition, GO is more efficient at enhancing mechanical performance of PCL compared with HA. Originality/value For the first time, a systematic study about effects of nano HA and GO particles on bioactive scaffolds produced by additive manufacturing for BTE applications is conducted in this work. Mechanical and thermal behaviors of each sample, pure PCL, PCL/HA and PCL/GO, are reported, correlated and compared with literature.


2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 99
Author(s):  
Konstantinos N. Raftopoulos ◽  
Edyta Hebda ◽  
Anna Grzybowska ◽  
Panagiotis A. Klonos ◽  
Apostolos Kyritsis ◽  
...  

A star polymer with a polyhedral oligomeric silsesquioxanne (POSS) core and poly(ethylene glycol) (PEG) vertex groups is incorporated in a polyurethane with flexible hard segments in-situ during the polymerization process. The blends are studied in terms of morphology, molecular dynamics, and charge mobility. The methods utilized for this purpose are scanning electron and atomic force microscopies (SEM, AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and to a larger extent dielectric relaxation spectroscopy (DRS). It is found that POSS reduces the degree of crystallinity of the hard segments. Contrary to what was observed in a similar system with POSS pendent along the main chain, soft phase calorimetric glass transition temperature drops as a result of plasticization, and homogenization of the soft phase by the star molecules. The dynamic glass transition though, remains practically unaffected, and a hypothesis is formed to resolve the discrepancy, based on the assumption of different thermal and dielectric responses of slow and fast modes of the system. A relaxation α′, slower than the bulky segmental α and common in polyurethanes, appears here too. A detailed analysis of dielectric spectra provides some evidence that this relaxation has cooperative character. An additional relaxation g, which is not commonly observed, accompanies the Maxwell Wagner Sillars interfacial polarization process, and has dynamics similar to it. POSS is found to introduce conductivity and possibly alter its mechanism. The study points out that different architectures of incorporation of POSS in polyurethane affect its physical properties by different mechanisms.


Author(s):  
Ignazio Blanco ◽  
Traian Zaharescu

AbstractA series of ethylene-propylene-diene-terpolymer (EPDM)/polyhedral oligomeric silsesquioxane (POSS) composites at different percentage of POSS were prepared and subjected to γ-irradiation. Both irradiated and non-irradiated EPDM and composites were investigated by the means of thermal analysis to verify if the presence of POSS molecules is able to reduce the oxidation level of free radicals generated during the degradation and to evaluate the effects of the irradiation. EPDM composites at 1, 3 and 5 mass% of POSS were thus degraded in a thermogravimetric (TG) balance in dynamic heating conditions (25–700 °C), in both inert and oxidative atmosphere by flowing nitrogen and air respectively. Thermal characterization was then completed by carrying out Differential Scanning Calorimetry (DSC) analysis from sub-ambient to better highlight the melting of the polymer and polymer composites occurring just above the room temperature. FTIR spectroscopy was also performed for the prepared samples to check the presence of the molecular filler in the composites and for the TG’s residue at 700 °C, in order to evaluate its nature. DSC and TGA parameters were detected and discussed to have information about the effect of the degradation’s environment, the effect of irradiation on polymer stabilization and the effect of POSS content in the polymer matrix.


Sign in / Sign up

Export Citation Format

Share Document