Structure Analyses of Experimental Welds Designed for Repair Welding of VVER 1000 Presssure Vessel

2015 ◽  
Vol 647 ◽  
pp. 131-140 ◽  
Author(s):  
Miroslava Matějová ◽  
Dagmar Jandová ◽  
Josef Kasl

Microstructural analysis and microhardness measurement of experimental repair weld joints were carried out in heat affected zone (HAZ) of the base material (BM) – steel 15Ch2NMFA after weld deposition of several layers by welding metal of Inconel FM 52. A temper bead welding (TBW) technique was used. Required microhardness up to 350 HV0.1 in heat affected zone of base material in distance 0.5 mm from fusion line was exceeded in all three experimental blocks with various welding energy inputs during deposition of three or five weld layers. Metallography showed reaustenitization and structure transformation in HAZ after the deposit of first layer in all three blocks. After deposit of the last layer the structure of HAZ in two blocks was tempered only and one variant of them have been recommended for futher technological tests. Structure of HAZ of the third block was not full tempered even after the last layer deposit.

Author(s):  
Lars Schemmann ◽  
Charles Stallybrass ◽  
Jens Schröder ◽  
Andreas Liessem ◽  
Stefan Zaefferer

Double submerged arc welding is an efficient process used during the production of longitudinally-welded large-diameter pipes. It is well known that the associated high heat input has a negative influence on the toughness of the heat-affected zone (HAZ). The toughness drop is related to changes in the HAZ microstructure compared to the base metal. The austenite grain size increases significantly and larger carbon-rich martensite/austenite particles (M/A-particles) are formed within a coarse bainitic matrix during the phase transformation compared to the as-rolled base material. The exact relationship between the microstructure, the processing conditions, base metal composition and the weld metal are at the focus of attention of materials development efforts at EUROPIPE and Salzgitter Mannesmann Forschung GmbH (SZMF). In the present study, scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) were used to investigate the HAZ of X70 large-diameter pipe material as well as tested Charpy specimens from the same material. Secondary cracks in the direct vicinity of the primary fracture surface of tested Charpy specimens from the HAZ were analyzed by EBSD and SEM to investigate the damage mechanism in detail. It was found that these cracks originate at M/A-particles and that the dominant crack path depends on the crystallographic orientation of the surrounding matrix. The analysis of several EBSD measurements and a 3D-analysis of the propagation direction of the crack showed that secondary cracks frequently propagate parallel to {100} and rarely along {110}-planes. It is known from literature that these are preferred cleavage planes in ferritic steels. The SEM analysis performed in the HAZ of the investigated steel showed that the volume fraction of elongated M/A-particles is elevated close to the fusion line and decreases within the first few hundred micrometers distance from the fusion line. The EBSD measurements illustrate that the geometrically necessary dislocation density is significantly increased in the neighborhood of M/A-particles. This indicates that the bainitic matrix is work-hardened around the M/A-particles during testing and is therefore more prone to the formation of microcracks than other surrounding regions.


2013 ◽  
Vol 7 (4) ◽  
pp. 226-229 ◽  
Author(s):  
Ihor Dzioba ◽  
Tadeusz Pała ◽  
Ilkka Valkonen

Abstract The paper presents experimental results of the characteristics of strength and fracture toughness of the material from the different zones of welded joints made of different participation of the linear welding energy. Strength characteristics and fracture toughness were determined in the weld material, in the area of fusion line, in the material of the heat affected zone and in the base material


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 402 ◽  
Author(s):  
Marek Sroka ◽  
Ewa Jonda ◽  
Wojciech Pakieła

This paper presents the effects of laser treatment (fiber laser YLS-4000) on the microstructure and selected mechanical properties of the surface layer of AlMg (AlMg9) foundry alloy obtained by alloying with boron carbide (B4C). The correlation between laser alloying process parameters and selected properties of the formed layer was discussed. The studies were supported by microstructural analysis of the remelted zone (RZ), heat affected zone (HAZ), undissolved carbide particles, substrate material, and precipitates formed during rapid solidification. Metallographic investigations of the laser-treated layer were performed using optical microscopy and scanning electron microscopy (SEM). The elemental composition and a detailed analysis of chemical composition in micro-areas were carried out using energy dispersive X-ray spectroscopy (EDS). The remelting thickness, heat-affected zone (HAZ), and amount of base material in surface layers were determined. Microhardness tests were performed on transverse cross-sections of the remelted zone to obtain the hardness profiles in the base material (BM), remelted zone (RZ), and heat affected zone (HAZ). The hardness, roughness, and wear resistance measurements showed that the highest tribological properties of the obtained surface layer were achieved using 0.5 Bar protective gas (Ar) during alloying with B4C powder.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4366
Author(s):  
Saqib Anwar ◽  
Ateekh Ur Rehman ◽  
Yusuf Usmani ◽  
Ali M. Al-Samhan

This study evaluated the microstructure, grain size, and mechanical properties of the alloy 800H rotary friction welds in as-welded and post-weld heat-treated conditions. The standards for the alloy 800H not only specify the composition and mechanical properties but also the minimum grain sizes. This is because these alloys are mostly used in creep resisting applications. The dynamic recrystallization of the highly strained and plasticized material during friction welding resulted in the fine grain structure (20 ± 2 µm) in the weld zone. However, a small increase in grain size was observed in the heat-affected zone of the weldment with a slight decrease in hardness compared to the base metal. Post-weld solution heat treatment (PWHT) of the friction weld joints increased the grain size (42 ± 4 µm) in the weld zone. Both as-welded and post-weld solution heat-treated friction weld joints failed in the heat-affected zone during the room temperature tensile testing and showed a lower yield strength and ultimate tensile strength than the base metal. A fracture analysis of the failed tensile samples revealed ductile fracture features. However, in high-temperature tensile testing, post-weld solution heat-treated joints exhibited superior elongation and strength compared to the as-welded joints due to the increase in the grain size of the weld metal. It was demonstrated in this study that the minimum grain size requirement of the alloy 800H friction weld joints could be successfully met by PWHT with improved strength and elongation, especially at high temperatures.


2014 ◽  
Vol 657 ◽  
pp. 306-310
Author(s):  
Lăcrămioara Apetrei ◽  
Vasile Rață ◽  
Ruxandra Rață ◽  
Elena Raluca Bulai

Research evolution timely tendencies, in the nonconventional technologies field, are: manufacture conditions optimization and complex equipments design. The increasing of ultrasonic machining use, in various technologies is due to the expanding need of a wide range materials and high quality manufacture standards in many activity fields. This paper present a experimental study made in order to analyze the welded zone material structure and welding quality. The effects of aluminium ultrasonic welding parameters such as relative energy, machining time, amplitude and working force were compared through traction tests values and microstructural analysis. Microhardness tests were, also, made in five different points, two in the base material and three in the welded zone, on each welded aluminium sample. The aluminum welding experiments were made at the National Research and Development Institute for Welding and Material Testing (ISIM) Timişoara. The ultrasonic welding temperature is lower than the aluminium melting temperature, that's so our experiments reveal that the aluminium ultrasonic welding process doesn't determine the appearance of moulding structure. In the joint we have only crystalline grains deformation, phase transformation and aluminium diffusion.


2021 ◽  
Vol 1027 ◽  
pp. 149-154
Author(s):  
Sen Dong Gu ◽  
Ji Peng Zhao ◽  
Rui Jie Ouyang ◽  
Yong Hong Zhang

In the present study, TA1 titanium alloy sheets with a thickness of 0.8mm were welded by electron beam welding. Microstructure of the welded region was investigated using optical microscope and electron backscattered diffraction. Then, the tensile test was conducted to analyse the tensile behavior of the welded sheets as well as the fractography of the fracture surfaces. It is shown that the mean grain size in the heat-affected zone is smaller than that in the fusion zone and base material. The strength of the base metal is lower than that of the fusion zone and heat-affected zone. The average values of the yield strength, tensile strength and elongation of the tensile specimens are 224MPa, 335MPa and 35%, respectively. In addition, the tensile specimens of the welded sheets suffer both ductile and brittle deformation during the tensile tests.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hongliang Yang ◽  
He Xue ◽  
Fuqiang Yang ◽  
Shuai Wang

To understand the effect of cold working of welding heat-affected zone on the driving force of the crack growth and crack growth rate of stress corrosion cracking (SCC) near the welding fusion line, the finite element simulation method was used to analyze the effect of cold working on the tensile stress of the crack tip at different locations near the fusion line. On this basis, the strain rate of the crack tip in the Ford-Andresen model is replaced by the creep rate of the crack tip, and the creep rate of the crack tip is used as driving force for the crack growth of SCC. The effect of the cold working level at the heat-affected zone on the driving force of the crack growth and crack growth rate of SCC are analyzed, and driving force of the crack growth and crack growth rate of SCC after one overload was compared.


2017 ◽  
Vol 754 ◽  
pp. 383-386
Author(s):  
Kee Nam Song

Different microstructures in the weld zone of a metal structure including a fusion zone and a heat affected zone, are formed as compared to the base material. Consequently, the mechanical properties in the weld zone are different from those in the base material to a certain degree owing to different microstructures and residual welding stresses. When a welded structure is loaded, the mechanical behavior of the welded structure might be different from the case of a structure with homogeneous mechanical properties. It is known that obtaining the mechanical properties in the weld is generally difficult owing to the narrow regions of the weld and interfaces. As an alternative way to obtain the weld mechanical properties, the weld mechanical properties of Alloy800HT, SUS316L, and Alloy617, were recently measured using an instrumented indentation technique, and the representative weld mechanical properties of these materials were estimated with a 95% lower confidence level for later structural analyses of the welded structures.


Sign in / Sign up

Export Citation Format

Share Document