Impact Resistant Behavior of RC Beam Damaged by Freeze-Thaw Action

2016 ◽  
Vol 711 ◽  
pp. 745-750
Author(s):  
Yusuke Kurihashi ◽  
Maki Mizuta ◽  
Akinori Shimata ◽  
Norimitsu Kishi

In this study, in order to investigate the impact resistant behavior of RC beams damaged by freeze-thaw action, falling-weight impact tests for RC beams were conducted taking with/without frost damage as variable. The RC beam used in this study has been damaged by accelerated freeze-thaw cycling. From this experiment, following results were obtained: 1) Elastic modulus and compressive strength of the concrete were decreased due to freeze-thaw action; 2) In the case of damaged beam, many fine cracks were occurred in small input energy; and 3) Deflections of damaged beam was larger than that of non-damaged beam at the same weight-falling height.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yusuke Kurihashi ◽  
Yoshinori Nonomura ◽  
Hisashi Konno

Many existing reinforced concrete (RC) structures constructed more than 50 years ago now require maintenance. This is especially true in cold, snowy regions where significant frost damage deterioration of RC structures becomes a severe problem. In this study, falling-weight impact tests were performed to investigate the impact resistance behavior of RC beams degraded by frost damage. An RC beam was subjected to approximately 900 freeze-thaw cycles to emulate the frost damage before the execution of the impact test. The surface of the beam was remarkably scaled, and its coarse aggregate was exposed. The degree of deterioration was evaluated by the distribution of ultrasonic propagation velocity. The following conclusions were drawn. (1) The ultrasonic propagation velocity of RC beams was significantly reduced following 872 freeze-thaw cycles. At the upper edge of the RC beam, the ultrasonic wave propagation velocity decreased from 4,000 m/s to 1,500 m/s in some parts. This corresponds to a relative dynamic elastic modulus of approximately 14%. (2) The residual deflection of RC beams with frost damage increased at most by 20% compared with beams without frost damage. The increase in residual deflection was primarily related to the peeling of concrete at the collision site and the opening of multiple bending cracks. (3) According to the existing residual deflection calculation formula, an increase of 20% in the residual deflection corresponds to a decrease of about 17% in the bending capacity of the RC beam. When the relationship between the degree of frost damage deterioration and the impact resistance of RC structures is defined, existing structures subjected to accidental impact force from rockfalls are safer and can be maintained more efficiently.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lizhuang Cui ◽  
Nan Qin ◽  
Shuai Wang ◽  
Xuezhi Feng

In order to study the mechanical properties of sandstone under the coupling action of chemical erosion and freeze-thaw cycles, the fine-grained yellow sandstone in a mining area in Zigong, China, is collected as the research object. The changes in mechanical properties of yellow sandstone under the coupling action of chemical solution erosion and freeze-thaw cycles are analyzed based on uniaxial compression tests (UCTs) and triaxial compression tests (TCTs). The results show that, with the increase in freeze-thaw cycles, the compressive strength, elastic modulus, and cohesion of the sandstone samples decrease with varying degrees. Under constant freeze-thaw cycles, the most serious mechanical properties of degradation are observed in acidic solution, followed by alkaline solution and neutral solution. Under different confining pressures, the compressive strength and elastic modulus of the sandstone samples decrease exponentially with the increase in freeze-thaw cycles. Under the action of the chemical solution erosion and freeze-thaw cycles, the internal friction angle fluctuates around 30°. For the cohesion degradation, 35.4%, 29.3%, and 27.2% degradation are observed under acidic, alkaline, and neutral solutions. Nuclear magnetic resonance imaging shows that the chemical erosion and freeze-thaw cycles both promote the degradation of rock properties from surface to interior; after 45 freeze-thaw cycles, the mechanical properties drop sharply. To properly design rock tunneling support and long-term protection in the cold region, the impact of both freeze-thaw cycles and chemical erosion should be considered.


2021 ◽  
Vol 11 (22) ◽  
pp. 10653
Author(s):  
Jingwei Gao ◽  
Chao Xu ◽  
Yan Xi ◽  
Lifeng Fan

This study investigated the effects of freezing temperature under freeze-thaw cycling conditions on the mechanical behavior of sandstone. First, the sandstone specimens were subjected to 10-time freeze-thaw cycling treatments at different freezing temperatures (−20, −40, −50, and −60 °C). Subsequently, a series of density, ultrasonic wave, and static and dynamic mechanical behavior tests were carried out. Finally, the effects of freezing temperature on the density, P-wave velocity, stress–strain curves, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption of sandstone were discussed. The results show that the density slightly decreases as temperature decreases, approximately by 1.0% at −60 °C compared with that at 20 °C. The P-wave velocity, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption obviously decrease. As freezing temperature decreases from 20 to −60 °C, the static uniaxial compressive strength, static elastic modulus, dynamic strength, and dynamic energy absorption of sandstone decrease by 16.8%, 21.2%, 30.8%, and 30.7%, respectively. The dynamic mechanical behavior is more sensitive to the freezing temperature during freeze-thawing cycling compared with the static mechanical behavior. In addition, a higher strain rate can induce a higher dynamic strength and energy absorption.


2010 ◽  
Vol 163-167 ◽  
pp. 1655-1660
Author(s):  
Jian Zhang ◽  
Bo Diao ◽  
Xiao Ning Zheng ◽  
Yan Dong Li

The mechanical properties of high strength concrete(HSC) were experimentally investigated under mixed erosion and freeze-thaw cycling according to ASTM C666(Procedure B), the erosion solution was mixed by weight of 3% sodium chloride and 5% sodium sulfate. The mass loss, relative dynamic modulus of elasticity, compressive strength, elastic modulus and other relative data were measured. The results showed that with the increasing number of freeze-thaw cycles, the surface scaled more seriously; the mass loss, compressive strength and elastic modulus continued to decrease; the relative dynamic modulus of elasticity increased slightly in the first 225 freeze-thaw cycles, then decreased in the following 75 cycles; the corresponding strain to peak stress decreased with the increase of freeze-thaw cycles. After 200 cycles, the rate of deterioration of concrete accelerated obviously.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 806 ◽  
Author(s):  
Hom Nath Dhakal ◽  
Elwan Le Méner ◽  
Marc Feldner ◽  
Chulin Jiang ◽  
Zhongyi Zhang

Understanding the damage mechanisms of composite materials requires detailed mapping of the failure behaviour using reliable techniques. This research focuses on an evaluation of the low-velocity falling weight impact damage behaviour of flax-basalt/vinyl ester (VE) hybrid composites. Incident impact energies under three different energy levels (50, 60, and 70 Joules) were employed to cause complete perforation in order to characterise different impact damage parameters, such as energy absorption characteristics, and damage modes and mechanisms. In addition, the water absorption behaviour of flax and flax basalt hybrid composites and its effects on the impact damage performance were also investigated. All the samples subjected to different incident energies were characterised using non-destructive techniques, such as scanning electron microscopy (SEM) and X-ray computed micro-tomography (πCT), to assess the damage mechanisms of studied flax/VE and flax/basalt/VE hybrid composites. The experimental results showed that the basalt hybrid system had a high impact energy and peak load compared to the flax/VE composite without hybridisation, indicating that a hybrid approach is a promising strategy for enhancing the toughness properties of natural fibre composites. The πCT and SEM images revealed that the failure modes observed for flax and flax basalt hybrid composites were a combination of matrix cracking, delamination, fibre breakage, and fibre pull out.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1251
Author(s):  
Tao Luo ◽  
Chi Zhang ◽  
Xiangtian Xu ◽  
Yanjun Shen ◽  
Hailiang Jia ◽  
...  

Frost damage of concrete has significant effects on the safety and durability of concrete structures in cold regions, and the concrete structures after repair and reinforcement are still threatened by cyclic freezing and thawing. In this study, the new-to-old concrete interface was reinforced by steel bar. The shear strength of the new-to-old concrete interface was tested after the new-to-old combination was subjected to cyclic freeze–thaw. The effects of the diameter of the steel bar, the compressive strength of new concrete, the number of freeze–thaw cycles and the freezing temperatures on the shear properties of new-to-old concrete interface were studied. The results showed that, in a certain range, the shear strength of the interface was proportional to the diameter of the steel bar and the strength of the new concrete. Meanwhile, the shear strength of the reinforced interface decreased with the decreasing of the freezing temperature and the increasing of the number of freeze–thaw cycles.


2002 ◽  
Vol 10 (4) ◽  
pp. 259-272 ◽  
Author(s):  
Bernard Schrauwen ◽  
Pascal Bertens ◽  
Ton Peijs

This paper describes the results of falling weight impact tests (FWITs) on glass-fibre-reinforced (GRP) laminates and E-glass/Dyneema® hybrid laminates. The test programme consisted of (i) falling weight impact tests to determine the penetration energy and (ii) experiments to determine the influence of hybrid construction on damage development and impact fatigue lifetime under repeated impact conditions at sub-penetration energy levels. The objective of this work was to investigate the effect of hybridisation on the impact behaviour of GRP laminates as well as to find optimal conditions for hybridisation. It was shown that in the case of a rigid test set-up - and hence small deflections - the influence of the Dyneema® on the impact behaviour of hybrid laminates is rather small because damage processes are the result of local contact stresses in the vicinity of the impact body, whereas in the case of a compliant test set-up and large deflections the high energy storage capacity of the ductile Dyneema® fibres is used far more effectively for the protection of hybrid composite laminates. Therefore, it was concluded that in order to fully utilise the potential of high-performance polyethylene fibres it is essential that these fibres are located on the (non-impacted) tensile side of an impacted laminate and that the geometrical test conditions are such that large (bending) deformations are allowed.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaohong Long ◽  
Ahmed Turgun ◽  
Rong Yue ◽  
Yongtao Ma ◽  
Hui Luo

Impact loads may cause serious or even fatal damage to the structure (component), in most existing specifications in China, and there are no special terms that take impact load into consideration. So, the response analysis of the structure (component) under impact loads is very important. In this paper, the sensitivity analysis was conducted for the 22 parameters of the Holmquist–Johnson concrete (HJC) constitutive model of concrete, and the sensitive parameters of the HJC model are identified with A, B, G, Pl, μl, and fc respectively. LS-DYNA nonlinear transient finite element analysis code was used for this paper. Based on the validation of finite element modeling and choosing midspan deflection of RC beams and impact loads as response indices, some influencing factors on RC beams under falling weight impact were investigated, such as the mass and speed of falling weight, impact position, the strength of concrete and rebar, longitudinal reinforcement ratio, and the span of the beam.


2018 ◽  
Vol 8 (8) ◽  
pp. 1217 ◽  
Author(s):  
Hanbing Liu ◽  
Guobao Luo ◽  
Haibin Wei ◽  
Han Yu

Pervious concrete (PC), as an environmental friendly material, can be very important in solving urban problems and mitigating the impact of climate change; i.e., flooding, urban heat island phenomena, and groundwater decline. The objective of this research is to evaluate the strength, permeability, and freeze-thaw durability of PC with different aggregate sizes, porosities, and water-binder ratios. The orthogonal experiment method is employed in the study and nine experiments are conducted. The compressive strength, flexural strength, permeability coefficient, porosity, density, and freeze-thaw durability of PC mixtures are tested. Range analysis and variance analysis are carried out to analyze the collected data and estimate the influence of aggregate size, porosity, and water-binder ratio on PC properties. The results indicate that porosity is the most important factor determining the properties of PC. High porosity results in better permeability, but negatively affects the mechanical strength and freeze-thaw durability. PC of 15% porosity can obtain high compressive strength in excess of 20 MPa and favorable freeze-thaw durability of 80 cycles without sacrificing excessive permeability. Aggregate size also has a significant effect on freeze-thaw durability and mechanical strength. Small aggregate size is advantageous for PC properties. PC with 4.75–9.5 mm coarse aggregate presents excellent freeze-thaw durability. The influence of the water-binder ratio on PC properties is not as significant as that of aggregate size and porosity. An optimal mix ratio is required to trade-off between permeability, mechanical strength, and freeze-thaw durability.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Wuman Zhang ◽  
Jingsong Zhang ◽  
Shuhang Chen ◽  
Sheng Gong

Two sets of roller-compacted concrete (RCC) samples cured for 28 days were subjected to freeze-thaw (F-T) cycles and immersion in laboratory conditions. F-T cycles in water and water-potassium acetate solution (50% by weight) were carried out and followed by the flexural impact test. The weight loss, the dynamic elastic modulus (Ed), the mechanical properties, and the residual strain of RCC were measured. The impact energy was calculated based on the final number of the impact test. The results show that the effect of F-T cycles in KAc solution on the weight loss and Ed of RCC is slight. Ed, the compressive strength, and the flexural strength of RCC with 250 F-T cycles in KAc solution decrease by 3.8%, 23%, and 36%, respectively. The content (by weight) of K+ at the same depth of RCC specimens increases with the increase of F-T cycles. The impact energy of RCC specimens subjected to 250 F-T cycles in KAc solution decreases by nearly 30%. Microcracks occur and increase with the increase of F-T cycles in KAc solution. The compressive strength of RCC immersed in KAc solution decreases by 18.8% and 32.8% after 6 and 12 months. More attention should be paid to using KAc in practical engineering because both the freeze-thaw cycles and the complete immersion in KAc solution damage the mechanical properties of RCC.


Sign in / Sign up

Export Citation Format

Share Document