Performance Test of Swage Anchorage According to the Insert of CFRP Tendon

2017 ◽  
Vol 730 ◽  
pp. 452-456
Author(s):  
Moon Seoung Keum ◽  
Jae Yoon Kang ◽  
Jong Sup Park ◽  
Woo Tai Jung

Despite of the numerous advantages offered by the CFRP tendon, there are still problems to be solved. Among them, finding an effective anchoring method considering the material properties of CFRP constitutes a typically pending problem. Being an orthotropic material, the CFRP tendon presents risk of breakage under forces acting perpendicularly to the direction of the fibers. This implies that a new type of anchor should be developed for the CFRP tendon since the anchorages used for conventional steel strands cannot be readily applied. Moreover, following the growing interest given to the CFRP tendon, research is being relentlessly conducted to develop dedicated anchorages with improved performance. Accordingly, this paper presents an experimental study on the anchor performance of the swage anchorage known to be the most compact among the various types of anchor. The tests revealed that the swage anchor without insert developed about 92% of the tensile strength of the CFRP tendon whereas the swage anchor with metallic winding insert developed 100% of the tensile strength. From these results, it appears that the anchorage with outer diameter of 24 mm develops anchor performance higher than 95% of the tensile performance of the CFRP tendon and can potentially be exploited for post-tensioning.

2019 ◽  
Vol 9 (1) ◽  
pp. 54-71
Author(s):  
Ma. Doreen Esplana Candelaria ◽  
Jaime Yabut Hernandez, Jr.

Construction materials are selected based on two factors: structural integrity and economy. However, there is an emerging issue with regards to building materials, and that is sustainability, which considers the environmental load of a construction material. Bamboo’s lightweight and flexibility make it a good alternative for residential construction in seismic. In this study, bamboo was tested for its material properties. Layered tensile tests and full-culm compressive tests were done to get the material properties of the bamboo. The top part of the bamboo culm recorded the highest tensile strength per layer, with its outer layers having tensile strength as high as 600 MPa. The tensile strength of its middle and inner layers, on the other hand, were approximately 450 MPa and 180 MPa, respectively. As for the compressive strength, the top part of the bamboo culm recorded the highest compressive strength with an average of 76.84 MPa. The middle part of the bamboo culm recorded the lowest compressive strength with an average of 62.55 MPa. The bottom part of the bamboo culm recorded an average compressive strength of 69.49 MPa. These properties were then used to construct an orthotropic material model and simulate the stresses using finite element modeling. The FEM model of a simply-supported beam with a concentrated load at midspan was made. To validate the orthotropic material model for bamboo, three-point bending tests of bamboo beams were conducted and compared with the simulation results. The results show that in modeling the material properties of the bamboo to check for deflections, the orthotropic model gives more accurate results.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 879 ◽  
Author(s):  
Min-Jae Kim ◽  
Soonho Kim ◽  
Doo-Yeol Yoo

The hybrid effect of twisted steel (T) fibers with an aspect ratio of 100 and polyethylene (PE) fibers with four different aspect ratios of 400, 600, 900, and 1200 on the mechanical performance of ultra-high-performance cementitious composite (UHPCC) was investigated. This involved a total of 17 different sample types at an identical fiber volume fraction of 2% being made and subjected to compressive and tensile loads. Samples were made by replacing 0.5%, 1.0%, 1.5%, and 2.0% of T fibers with four different types of PE fibers. In addition, the pullout behaviors of fibers at cracked sections and the cracking behaviors of specimens were evaluated in order to determine the effect of the pullout mechanism of each fiber on the overall tensile performance. Test results indicate that the compressive strength decreased in proportion to the amount of PE fibers, regardless of their aspect ratio. The fiber hybridization had a great synergetic effect, successfully improving the tensile strength and strain capacity of UHPCCs; this effect was dependent on the aspect ratio of the PE fibers. Finally, the cracking behaviors were determined to be more related to the fiber type and pullout mechanisms than the tensile strength or strain capacity of UHPCCs.


2020 ◽  
Vol 7 (3) ◽  
pp. 200203
Author(s):  
Yan-San Huang ◽  
Pei-Lin Chiang ◽  
Ying-Chuan Kao ◽  
Fu-Lan Hsu ◽  
Jia-Yang Juang

Understanding the failure modes of curved hollow tree trunks is essential from both safety and conservation perspectives. Despite extensive research, the underlying mechanism that determines the cracking failure of curved hollow tree trunks remains unclear due to the lack of theoretical analysis that considers both the initial curvature and orthotropic material properties. Here we derive new mathematical expressions for predicting the bending moment, M crack , at which the cracking failure occurs. The failure mode of a tree species is then determined, as a function of t / R and cR , by comparing M crack with M bend , where t , R and c are, respectively, the trunk wall thickness, outer radius and initial curvature; M bend is the bending moment for conventional bending failure. Our equation shows that M crack is proportional to the tangential tensile strength of wood σ T , increases with t / R , and decreases with the final cR . We analyse 11 tree species and find that hardwoods are more likely to fail in conventional bending, whereas softwoods tend to break due to cracking. This is due to the softwoods' much smaller tangential tensile strength, as observed from the data of 66 hardwoods and 43 softwoods. For larger cR , cracking failure is easier to occur in curvature-decreasing bending than curvature-increasing due to additional normal tensile force F acting on the neutral cross-section; on the other hand, for smaller cR , bending failure is easier to occur due to decreased final curvature. Our formulae are applicable to other natural and man-made curved hollow beams with orthotropic material properties. Our findings provide insights for those managing trees in urban situations and those managing for conservation of hollow-dependent fauna in both urban and rural settings.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4999
Author(s):  
Xiaojun Li ◽  
Ruizhi Yang ◽  
Hao Li ◽  
Hao Yi ◽  
Hongjun Jing

In order to solve the shortcomings of the traditional curing agent in the treatment of composite heavy-metal-contaminated soil with the solidification and stabilization method, a new type of cementing material A was used as a curing agent, and the Pb, Cd, Cu composite heavy-metal-contaminated soil was artificially prepared to carry out an experimental study on solidification and stabilization (SS) restoration by the mechanical properties test, leaching performance test, and microscopic test. The results show that in the range of test dosage, with the increase in the curing agent content, the unconfined compressive strength of the solidified body increased, and the resistance to deformation was enhanced. From the perspective of leaching characteristics, the new curing agent A had an excellent curing effect on the composite heavy-metal-contaminated soil. To achieve safe disposal, a curing agent content of 10% applies only for the soil heavily contaminated by heavy metals. The curing agent A could significantly reduce the content of acid-extractable heavy metals after solidifying the heavy metal Pb, Cd, and Cu composite contaminated soil and effectively converted it into a residue state. The solidified phase contained hydrated products such as calcium silicate hydrate (CSH) and ettringite (AFt). These hydrated products can inhibit the leaching performance of heavy metal ions through adsorption, encapsulation, and ion exchange. The study provides a feasible method and reference for the solidification, restoration, and resource utilization of heavy-metal-contaminated soil in the subgrade.


2021 ◽  
pp. 152808372110042
Author(s):  
Partha Sikdar ◽  
Gajanan S Bhat ◽  
Doug Hinchliff ◽  
Shafiqul Islam ◽  
Brian Condon

The objective of this research was to produce elastomeric nonwovens containing cotton by the combination of appropriate process. Such nonwovens are in demand for use in several healthcare, baby care, and adult care products that require stretchability, comfort, and barrier properties. Meltblown fabrics have very high surface area due to microfibers and have good absorbency, permeability, and barrier properties. Spunbonding is the most economical process to produce nonwovens with good strength and physical properties with relatively larger diameter fibers. Incorporating cotton fibers into elastomeric nonwovens can enhance the performance of products, such as absorbency and comfort. There has not been any study yet to use such novel approaches to produce elastomeric cotton fiber nonwovens. A hydroentangling process was used to integrate cotton fibers into produced elastomeric spunbond and meltblown nonwovens. The laminated web structures produced by various combinations were evaluated for their physical properties such as weight, thickness, air permeability, pore size, tensile strength, and especially the stretch recovery. Incorporating cotton into elastic webs resulted in composite structures with improved moisture absorbency (250%-800%) as well as good breathability and elastic properties. The results also show that incorporating cotton can significantly increase tensile strength with improved spontaneous recovery from stretch even after the 5th cycle. Results from the experiments demonstrate that such composite webs with improved performance properties can be produced by commercially used processes.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 748
Author(s):  
Xiaoyan Bian ◽  
Yao Zhang ◽  
Qibin Zhou ◽  
Ting Cao ◽  
Bengang Wei

Building Integrated Photovoltaic (BIPV) modules are a new type of photovoltaic (PV) modules that are widely used in distributed PV stations on the roof of buildings for power generation. Due to the high installation location, BIPV modules suffer from lightning hazard greatly. In order to evaluate the risk of lightning stroke and consequent damage to BIPV modules, the studies on the lightning attachment characteristics and the lightning energy withstand capability are conducted, respectively, based on numerical and experimental methods in this paper. In the study of lightning attachment characteristics, the numerical simulation results show that it is easier for the charges to concentrate on the upper edge of the BIPV metal frame. Therefore, the electric field strength at the upper edge is enhanced to emit upward leaders and attract the lightning downward leaders. The conclusion is verified through the long-gap discharge experiment in a high voltage lab. From the experimental study of multi-discharge in the lab, it is found that the lightning interception efficiency of the BIPV module is improved by 114% compared with the traditional PV modules. In the study of lightning energy withstand capability, a thermoelectric coupling model is established. With this model, the potential, current and temperature can be calculated in the multi-physical field numerical simulation. The results show that the maximum temperature of the metal frame increases by 16.07 °C when 100 kA lightning current flows through it and does not bring any damage to the PV modules. The numerical results have a good consistency with the experimental study results obtained from the 100 kA impulse current experiment in the lab.


2013 ◽  
Vol 675 ◽  
pp. 317-321
Author(s):  
Meng Ying Fang ◽  
Li Chun Liu ◽  
Fang Yin ◽  
Wu Di Zhang ◽  
Shi Qing Liu ◽  
...  

Using petroleum ether to extract the fermentative fluid (bio-slurry), then to get the inhibition mechanism of it, and infer which is the main component in inhibition mechanism of biogas. The conclusion found by the experiment is that fat soluble substance is better than water soluble substance in inhibition mechanism, and fat soluble substance is close to 75% biogas fermentation fluid, while water soluble substance is worst. That is to say, the main subject in inhibition mechanism is hided in the fat soluble substance.


2015 ◽  
Vol 60 (4) ◽  
pp. 2821-2826 ◽  
Author(s):  
A. Wierzba ◽  
S. Mróz ◽  
P. Szota ◽  
A. Stefanik ◽  
R. Mola

The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm) was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.


ICCTP 2010 ◽  
2010 ◽  
Author(s):  
Hua Zang ◽  
Zhao Liu ◽  
Yong-ming Tu ◽  
Yun-mei Meng

Sign in / Sign up

Export Citation Format

Share Document