Comparison the Physical and Antimicrobial Properties of Poly(Lactic Acid) Film and its Composites with ZnO Nanoparticles

2018 ◽  
Vol 772 ◽  
pp. 100-104
Author(s):  
Tongsai Jamnongkan ◽  
Nareerat Kamlong ◽  
Nicha Thiangtrong ◽  
Rattanaphol Mongkholrattanasit

Polylactic acid (PLA) is a bioplastic, which is produced from natural materials. It is well known that the PLA can be degraded in the environment which is alternatively rendered to replace the plastic from a petroleum base. In this paper, we study the physical properties of composite films prepared from PLA composited with zinc oxide nanoparticles (ZnO NPs) by using solvent casting technique. It was found that the ZnO NPs have affected to the morphological, water absorbency, mechanical and antibacterial properties of biocomposite films. In addition, we also found that the particles of ZnO NPs can disperse within the PLA matrices, which enhanced the stress and Young’s modulus of biocomposite films. Additionally, the result shown that the PLA/ZnO NPs films exhibit good antibacterial activity both in Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacterial strains.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1132
Author(s):  
Eduardo Lanzagorta Garcia ◽  
Olivia A. Attallah ◽  
Marija Mojicevic ◽  
Declan M Devine ◽  
Margaret Brennan Fournet

An innovative antimicrobial technology for plastic surfaces is presented. We report the synthesis and scale-up of triangular silver nanoplates (TSNPs) and their integration into polycaprolactone (PCL) and polylactic acid (PLA) polymers through a solvent-casting technique. The TSNPs have a high geometric aspect ratio and strong local surface plasmon resonance (LSPR) response, which provides an effective tool for monitoring their integrity during processing and integration with the biodegradable plastics. An aqueous-based seed-mediated chemical method was used to synthesize the TSNPs, and characterisation was carried out using TEM and UV (Ultraviolet)-VIS (Visible) spectroscopy to measure LSPR profiles. The UV-VIS spectra of silver seeds and TSNPs exhibited characteristic peaks at 395 and 600 nm respectively. Synthesized TSNPs were coated with thiol-terminated polyethylene glycol (SH-PEG) and transferred into chloroform in order to effect compatibility with PCL and PLA. TSNP/PCL and TSNP/PLA composite films were prepared by solvent casting. The morphological structure, thermal, mechanical, and antimicrobial properties of the TSNP-incorporated composite films were evaluated. Results showed the TSNP-treated films had a rougher surface than the bare films. Insignificant changes in the thermal properties of TSNP-treated films compared to bare ones were also observed, which indicated the thermal stability of the composite films. The tensile strength and antimicrobial properties of the composite films were increased after TSNP incorporation. TSNP/PCL and TSNP/PLA films exhibited improved antimicrobial activity against Escherichia coli and Staphylococcus aureus with antimicrobial effect (AE) values ranging between 0.10 and 0.35. The obtained results and demonstrated TSNP production scalability validate the TSNP treated PCL and PLA films as a composite material with desirable antimicrobial effect for wide-ranging surface applications.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2605 ◽  
Author(s):  
A. Rozilah ◽  
C. N. Aiza Jaafar ◽  
S. M. Sapuan ◽  
I. Zainol ◽  
R. A. Ilyas

Antibacterial sugar palm starch biopolymer composite films were developed and derived from renewable sources and inorganic silver nanoparticles (AgNPs) as main ingredients for antibacterial coatings. The composite films were produced by solution casting method and the mechanical and physicochemical properties were determined by tensile test, Fourier Transform Infrared (FTIR) analysis, thermal gravimetric analysis (TGA), antibacterial screening test and field emission scanning electron microscopy (FESEM) images. It was found that mechanical and antibacterial properties of biocomposite films were improved after the addition of AgNPs compared with the film without active metals. The weakness of neat biocomposite films was improved by incorporating inorganic AgNPs as a nanofiller in the films’ matrix to avoid bacterial growth. The results showed that the tensile strength ranged between 8 kPa and 408 kPa and the elasticity modulus was between 5.72 kPa and 9.86 kPa. The addition of AgNPs in FTIR analysis decreased the transmittance value, caused small changes in the chemical structure, caused small differences in the intensity peaks, and produced longer wavelengths. These active films increased the degradation weight and decomposition temperature due to the more heat-stable AgNPs. Meanwhile, the average inhibited areas measured were between 7.66 and 7.83 mm (Escherichia coli), 7.5 and 8.0 mm (Salmonella cholerasuis), and 0.1 and 0.5 mm for Staphylococcus aureus. From the microscopic analysis, it was observed that the average size of all microbes for 1 wt% and 4 wt% AgNPs ranged from 0.57 to 2.90 mm. Overall, 3 wt% AgNP nanofiller was found to be the best composition that fulfilled all the mechanical properties and had better antimicrobial properties. Thus, the development of an organic-inorganic hybrid of antibacterial biopolymer composite films is suitable for antibacterial coatings.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1878
Author(s):  
Marina Ramos ◽  
Elena Fortunati ◽  
Ana Beltrán ◽  
Mercedes Peltzer ◽  
Francesco Cristofaro ◽  
...  

Nano-biocomposite films based on poly (lactic acid) (PLA) were prepared by adding thymol (8 wt.%) and a commercial montmorillonite (D43B) at different concentrations (2.5 and 5 wt.%). The antioxidant, antimicrobial, and disintegration properties of all films were determined. A kinetic study was carried out to evaluate the thymol release from the polymer matrix into ethanol 10% (v/v) as food simulant. The nanostructured networks formed in binary and ternary systems were of interest in controlling the release of thymol into the food simulant. The results indicated that the diffusion of thymol through the PLA matrix was influenced by the presence of the nanoclay. Disintegration tests demonstrated that the incorporation of both additives promoted the breakdown of the polymer matrix due to the presence of the reactive hydroxyl group in the thymol structure and ammonium groups in D43B. Active films containing thymol and D43B efficiently enhanced the antioxidant activity (inhibition values higher than 77%) of the nano-biocomposites. Finally, the addition of 8 wt.% thymol and 2.5 wt.% D43B significantly increased the antibacterial activity against Escherichia coli and Staphylococcus aureus 8325-4, resulting in a clear advantage to improve the shelf-life of perishable packaged food.


2012 ◽  
Vol 488-489 ◽  
pp. 1016-1020 ◽  
Author(s):  
Sayamon Somsub ◽  
Duangdao Aht-Ong

The objectives of this research were to prepare self-reinforcement biocomposites films from sisal cellulose by solvent casting using NaOH complex solution and to investigate the effect of reinforcement content (i.e., 0, 5, 10, 15, and 20 wt %) in various forms, i.e., sisal microcrystalline cellulose (MCC), commercial MCC, and short sisal fiber, respectively. The sisal MCC was extracted from sisal fiber by means of delignification, bleaching, and acid hydrolysis, respectively. The obtained MCC powder observed by scanning electron microscope (SEM) appeared as short fiber shape with smooth surface having diameter of approximately 10 μm, whereas its length was varied between 67-150 μm. The tensile strength and Young’s modulus of the composite films reinforced with 15 wt % of sisal MCC reached up to 5.16 MPa and 375.25 MPa, respectively. The degradation temperature investigated by thermogravimetric analyzer (TGA) and water absorption values were significantly improved with increasing of reinforcement loading.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
R. Betancourt-Galindo ◽  
P. Y. Reyes-Rodriguez ◽  
B. A. Puente-Urbina ◽  
C. A. Avila-Orta ◽  
O. S. Rodríguez-Fernández ◽  
...  

Copper nanoparticles were synthesized by thermal decomposition using copper chloride, sodium oleate, and phenyl ether as solvent agents. The formation of nanoparticles was evidenced by the X-ray diffraction and transmission electron microscopy. The peaks in the XRD pattern correspond to the standard values of the face centered cubic (fcc) structure of metallic copper and no peaks of other impurity crystalline phases were detected. TEM analysis showed spherical nanoparticles with sizes in the range of 4 to 18 nm. The antibacterial properties of copper nanoparticles were evaluatedin vitroagainst strains ofStaphylococcus aureusandPseudomonas aeruginosa. The antibacterial activity of copper nanoparticles synthesized by thermal decomposition showed significant inhibitory effect against these highly multidrug-resistant bacterial strains.


Author(s):  
Festus O. Taiwo ◽  
Craig A. Obafemi ◽  
David A. Akinpelu A. Akinpelu

Aims: This studies aims at the synthesis of new heterocyclic systems and study its biological and pharmacological properties. Objective: This study was designed to synthesized some quinoxaline-2,3-dione with sulfonamide moiety, characterize the synthesized compounds, and study the antimicrobial properties of the synthesized compounds on some bacterial strains. Materials and Methods: Six quinoxaline-6-sulfonohydrazone derivatives were synthesized by reacting quinoxaline-6-sulfonohydrazine with some substituted benzaldehydes and ketones. The compounds were tested for their potential antibacterial properties. Results: All the test compounds possessed promising antibacterial property against a panel of bacterial strains used for this study. The MIC values exhibited by these compounds ranged between 0.0313 and 0.250 mg/mL. Among the compounds tested, compound 2 showed appreciable antibacterial activity. Discussion and Conclusion: The study concluded that all the compounds exhibited appreciable bactericidal effects towards all the bacterial strains, particularly, compound 2 This is an indication that such compounds possessing broad spectrum activities will be useful in formulating antimicrobial compounds which could be used to treat infections caused by pathogens that are now developing resistance against the available antibiotics.


2020 ◽  
Vol 11 ◽  
pp. 1119-1125
Author(s):  
Mohammad Jaber ◽  
Asim Mushtaq ◽  
Kebiao Zhang ◽  
Jindan Wu ◽  
Dandan Luo ◽  
...  

The control over contagious diseases caused by pathogenic organisms has become a serious health issue. The extensive usage of antibiotics has led to the development of multidrug-resistant bacterial strains. In this regard, metal-oxide-based antibacterial nanomaterials have received potential research interest due to the efficient prevention of microorganism growth. In this study, splat-shaped Ag–TiO2 nanocomposites (NCs) were synthesized on the gram scale and the enhanced antibacterial properties of TiO2 in the presence of silver were examined. The formation of Ag–TiO2 NCs was analyzed through various characterization techniques. The cell viability experimental results demonstrated that the Ag–TiO2 NCs have good biocompatibility. The antibacterial activity of the prepared Ag–TiO2 NCs was tested against the Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacterial strains. The Ag–TiO2 NCs exhibited promising and superior antibacterial properties compared to TiO2 nanospheres as confirmed by the bacterial growth and inhibition zone. The improvement in the antibacterial activity was attributed to the synergistic effect of the hybrid nature of TiO2 nanoparticles in the presence of Ag.


2012 ◽  
Vol 66 (2) ◽  
Author(s):  
Loredana-Mihaela Dobre ◽  
Anicuţa Stoica-Guzun ◽  
Marta Stroescu ◽  
Iuliana Jipa ◽  
Tǎnase Dobre ◽  
...  

AbstractAntimicrobial packaging protects the product from the external environment and microbial contamination, conferring numerous advantages on human health. Interest in biopolymers as packaging materials has considerably increased recently. Bacterial cellulose is an interesting biomaterial produced as nanofibrils by Acetobacter xylinium and is a promising candidate due to its remarkable properties. New composite materials with antimicrobial properties were developed in this work, containing poly(vinyl alcohol) (PVA) as polymer matrix and ground bacterial cellulose (BC) as reinforcing fibres. Sorbic acid was used as an antimicrobial agent because it is a preservative recognised in the food industry. The materials obtained were studied using Fourier-transformed infrared spectroscopy (FTIR). The swelling rate of the composites was also measured. Release experiments of sorbic acid from the composite films into water were performed and the mass transfer phenomena were investigated using Fick’s law of diffusion. The antimicrobial effect was tested against Escherichia coli K12-MG1655. The results obtained indicated that the new biocomposite films could be promising antimicrobial food packaging materials.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
John Coccimiglio ◽  
Misagh Alipour ◽  
Zi-Hua Jiang ◽  
Christine Gottardo ◽  
Zacharias Suntres

Oregano is a perennial shrub that grows in the mountains of the Mediterranean and Euro/Irano-Siberian regions. This study was conducted to identify the major constituents of the ethanolicOriganum vulgareextract and examine the cytotoxic, antioxidant, and antibacterial properties of the extract but more importantly the contribution of its specific major constituent(s) or their combination to the overall extract biological activity. Gas chromatography/mass spectroscopy analysis showed that the extract contained monoterpene hydrocarbons and phenolic compounds, the major ones being carvacrol and thymol and to a lesser extent p-cymene, 1-octacosanol, creosol, and phytol. A549 epithelial cells challenged with the extract showed a concentration-dependent increase in cytotoxicity. A combination of thymol and carvacrol at equimolar concentrations to those present in the extract was less cytotoxic. The A549 cells pretreated with nonlethal extract concentrations protected against hydrogen-peroxide-induced cytotoxicity, an antioxidant effect more effective than the combination of equimolar concentrations of thymol/carvacrol. Inclusion of p-cymene and/or 1-octacosanol did not alter the synergistic antioxidant effects of the carvacrol/thymol mixture. The extract also exhibited antimicrobial properties against Gram-positive and Gram-negative bacterial strains including clinical isolates. In conclusion, the oregano extract has cytotoxic, antioxidant, and antibacterial activities mostly attributed to carvacrol and thymol.


2021 ◽  
pp. 088391152110142
Author(s):  
Lutfor Rahman ◽  
Jutika Goswami

Being credited with the most extensively studied polysaccharide polymer and promising candidate for versatile applications, chitosan has proved to be a standalone material with loads of diversified properties in various structural forms such as blends and composites. Considering the abundance of this biopolymer and its non-toxic nature, exploiting chitosan offers two-folded benefits – environment friendliness and fabrication as per the need. Alkaline deacetylation of chitin produces chitosan as a polymer that can be tuned to a great extent as per the requirement by altering the degree of deacetylation (DDA) and molecular weight (MW). This biopolymer has been widely investigated for potential application in the food and biomedical fields due to its antimicrobial and antibacterial properties. Chitosan based composite films incorporated with different natural extracts have shown significant enhancement in the physical and biological activities as reported by different studies. The current study reviews recent developments and investigations of chitosan based biocomposite films incorporated with different natural extracts emphasizing on the improvement of physical and biological properties and its applications.


Sign in / Sign up

Export Citation Format

Share Document