Study on the Development and Performance of a New Concrete Antifoaming Agent

2021 ◽  
Vol 871 ◽  
pp. 357-362
Author(s):  
Ge Li Li ◽  
Yun Hui Fang ◽  
Chuan Deng Wu ◽  
You Zhe Shao ◽  
Yuan Qiang Guo ◽  
...  

Gemini surfactant acetylene glycol polyethers and polyhydrosilicone oil were used as raw materials to generate the acetylene glycol surfactants with defoaming, antifoaming properties, and polyether modification through a hydrolyzation reaction. A novel silicone surfactant based on acetylene glycol-modified polyoxysilane, which has the advantages of low surface tension and good water solubility. Its structure characterized by infrared. Finally, the new silicone surfactant prepared was emulsified with a composite emulsifier, and a new concrete defoamer was prepared by a mechanical method. The defoaming performance, foam suppression performance and surface tension were tested. The results showed that the new silicone surfactants contained functional groups of acetylene glycol and siloxane. The composite emulsifiers were Span40 and Tween60, which the HLB value was 10, the amount was 5% and the emulsification time was 30 minutes. The prepared new concrete defoamer has good defoaming and antifoaming properties with a low surface tension.

2020 ◽  
Vol 213 ◽  
pp. 03012
Author(s):  
Rongjun Zhang ◽  
Zhengpeng Zhou ◽  
Xuegang Wei ◽  
Wei Wei ◽  
Xiaoke Wang ◽  
...  

Using sodium bisulfite and epichlorohydrin as raw materials, the ring-opening reaction is carried out under the action of acatalyst to produce sodium 3-chloro-2-hydroxypropane sulfonate, followed by dodecyl tertiary amine, isopropanol, sodium hydroxide and 3-chloro-2-hydroxypropane sulfonate sodium as raw materials, under certain conditions to synthesize dodecyl hydroxy sulfobetaine surfactant. The surface tension, interfacial tension, salt resistance and emulsification properties of the synthesized surfactants were tested and evaluated. The experimental results show that the surfactant has a low critical micelle concentration and surface tension; the interfacial tension decreases with the increase of surfactant concentration. When the concentration is greater than or equal to 0.3%, the interfacial tension reaches 10-2 level; the dodecyl hydroxy sulfobetaine surfactant solution shows good salt resistance; when the concentration of dodecyl hydroxy sulfobetaine surfactant solution is 0.5%, the water separation rate in 120 minutes is the lowest and the emulsification ability is the strongest.


2020 ◽  
Vol 15 (7) ◽  
pp. 884-893
Author(s):  
Guoqing Xiao ◽  
Lei Lei ◽  
Chunyan Chen ◽  
Yuanyuan Li ◽  
Wenquan Hu

Fluorine-free foam fire extinguishing agents are environmentally friendly compared with aqueous film-forming foam fire extinguishing agents (AFFF). Design-Expert 11.0 software and the Box-Behnken design principle were used to optimize the foaming agent formulation which is the core of fluorine-free foam extinguishing agents and regression models of the expansion ratio (α), 50% drainage time (t50%) and surface tension (γ) were established. Furthermore, the optimal combination of foaming agent various factors (the mass fraction of APG0810, silicone surfactant, SDS and BS-12) were predicted by the regression models. The prediction results showed that when the mass fraction of APG0810, silicone surfactant, SDS and BS-12 were 2.0%, 0.242%, 0.116% and 0.349%, respectively, the comprehensive foaming agent performance was highest. The α, t50% and γ of the optimized foaming agent were 8.0, 376 s, and 24.1 mN/m, respectively. The fluorinefree foam fire extinguishing agent was prepared by compounding the optimized foaming agent with foam stabilizers and other additives, resulting in a surface tension of 24.3 mN/m and a spreading factor greater than zero. The, α, t50% and sealing time of the fluorine-free foam fire extinguishing agent were 7.6, 541 s, and 895 s, respectively, which were 8.6%, 16.1%, and 14% higher than commercial 6% AFFF.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2817
Author(s):  
Biao Yu ◽  
Jingwei He ◽  
Sufyan Garoushi ◽  
Pekka K. Vallittu ◽  
Lippo Lassila

In order to improve the toughness and reduce polymerization shrinkage of traditional bisphenol A-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) based dental resin system, a hyperbranched thiol oligomer (HMDI-6SH) was synthesized via thiol-isocyanate click reaction using pentaerythritol tetra(3-mercaptopropionate (PETA) and dicyclohexylmethane 4,4′-diisocyanate (HMDI) as raw materials. Then HMDI-6SH was mixed with 1,3,5-Triallyl-1,3,5-Triazine-2,4,6(1H,3H,5H)-Trione (TTT) to prepare thiol-ene monomer systems, which were added into Bis-GMA/TEGDMA resins with different mass ratio from 10 wt% to 40 wt% to serve as anti-shrinking and toughening agent. The physicochemical properties of these thiol-ene-methacrylate ternary resins including functional groups conversion, volumetric shrinkage, flexural properties, water sorption, and water solubility were evaluated. The results showed that the incorporation of HMDI/TTT monomer systems into Bis-GMA/TEGDMA based resin could improve C=C double bond conversion from 62.1% to 82.8% and reduced volumetric shrinkage from 8.53% to 4.92%. When the mass fraction of HMDI/TTT monomer systems in the resins was no more than 20 wt%, the flexural strength of the resin was higher or comparable to Bis-GMA/TEGDMA based resins (p > 0.05). The toughness (it was measured from the stress–strain curves of three-point bending test) of the resins was improved. Water sorption and water solubility tests showed that the hydrophobicity of resin was enhanced with increasing the content of thioester moiety in resin.


2020 ◽  
Vol 16 (8) ◽  
Author(s):  
Jiabao Cao ◽  
Baoxin Lu ◽  
Dongjie Zhang ◽  
Longkui Cao ◽  
Xia Wang ◽  
...  

AbstractThe present study was carried out to produce a high quality puffed infant rice cereal from rice and mung bean through extrusion technology. Experiments were designed using 3 independent variables (i. e. 14–18% feed moisture, 400–550 r/min screw speed and 125–175 °C barrel temperature) and 3 response variables (i. e. bulk density, water solubility index and degree of gelatinisation) at five different levels of central composite rotatable design (CCRD). The results of optimization demonstrated that 14% feed moisture, 400 r/min screw speed and 175 °C barrel temperature could generate rice-mungbean extrudates with desirable functional properties. The selected extrudate samples were further examined using scanning electron microscope (SEM), rapid viscosity analyzer (RVA), Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD) analysis, in vitro digestibility and fundamental nutrient analysis. Notably, the initial oval-shaped particle structure of starch in the raw materials disappeared, the surface debris and roughness increased, and the density decreased. The time required for the gelatinization of puffed infant rice cereal was the shortest, which was in agreement with the positioning of ready-to-eat weaning food for infants. Moreover, the puffed infant rice cereal displayed higher peak viscosity and breakdown value, smaller retrogradation value and greater top taste value compared to the commercial infant rice cereal. Besides maintaining the initial characteristic peak of starch, the puffed infant rice cereal demonstrated characteristic absorption peaks of COO- in the vicinity of 1546 cm−1 and 1437 cm−1, indicating the formation of carboxylate during extrusion. In addition, the puffed infant rice cereal exhibited firm diffraction peaks at the diffraction angles of 7.4°, 12.5° and 20.5°, indicating that a certain amount of starch changed from type A to type V. Furthermore, the digestive rate of puffed infant rice cereal was higher than that of commercial infant cereal (90.21 versus 86.96%, respectively; p < 0.05). Altogether, our findings reveal that the developed puffed infant rice cereal meets the standards set by the Codex Alimentarius Commission (CAC; 74-1981).


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 186
Author(s):  
Maria Natalia Calienni ◽  
Daniela Maza Vega ◽  
C. Facundo Temprana ◽  
María Cecilia Izquierdo ◽  
David E. Ybarra ◽  
...  

Vismodegib is a first-in-class inhibitor for advanced basal cell carcinoma treatment. Its daily oral doses present a high distribution volume and several side effects. We evaluated its skin penetration loaded in diverse nanosystems as potential strategies to reduce side effects and drug quantities. Ultradeformable liposomes, ethosomes, colloidal liquid crystals, and dendrimers were able to transport Vismodegib to deep skin layers, while polymeric micelles failed at this. As lipidic systems were the most effective, we assessed the in vitro and in vivo toxicity of Vismodegib-loaded ultradeformable liposomes, apoptosis, and cellular uptake. Vismodegib emerges as a versatile drug that can be loaded in several delivery systems for topical application. These findings may be also useful for the consideration of topical delivery of other drugs with a low water solubility.


2017 ◽  
Vol 896 ◽  
pp. 167-174 ◽  
Author(s):  
Zhi Yuan Yang ◽  
Zhuo Yue Meng ◽  
Zhi Hua Li ◽  
Si Tong Wang

Polyethylene glycol (PEG-200) and itaconic acid (IA) were used as raw materials to compound macromer through esterification reaction. A new type of specialized water-coke slurry dispersant was synthesized by copolymerization of microware, sodium methallyl sulfonate (SMAS) and maleic anhydride (MA). The experiment showed that the concentration of slurry could be reached to 63% with the dosage of 0.2%, and the apparent viscosity was 1140.3 mPa∙s. Through the analysis of the infrared, the dispersant was confirmed to have polyethylene glycol branched chain and hydrophilic functional groups such as carboxyl or sulfonic group. When the concentration of dispersant was 30 g/L, the surface tension of water could be decreased from 72.70 mN/m to 45.50 mN/m. Furthermore, when the solution pH value was 9, the Zeta potential of semi-coke powder surface could also be decreased from-13.38 mV to-25 mV with the addition of dispersant. Thus, this dispersant could increase electronegativity of semi-coke powder surface, enhance steric-hindrance effect and prevent the phenomenon of powder flocculation and gather. Meantime, it also could reinforce the semi-coke hydrophilic by reducing the surface tension of water effectively. And then, the high performance water-coke slurry could be obtained.


2016 ◽  
Vol 852 ◽  
pp. 1319-1324 ◽  
Author(s):  
Jing Li ◽  
Chang Ping Wei ◽  
Feng Ming Wang ◽  
Li Dan Dong ◽  
Shuang Sun ◽  
...  

In this paper,under alkaline conditions,with chloroacetic acid to modify chitosan,obtained carboxymethyl chitosan. At pH<7 conditions,the obtained carboxymethy chitosan respectively were reacted with calcium chloride solution,zinc chloride solution,after fully reacted,obtained carboxymethyl chitosan calcium and carboxymethyl chitosan zinc .Through infrared spectrum,X-ray diffraction and scanning electron microscopy (sem) analysis means,the structure of the products were characterized.Through the cutting of mice tail hemostasia test ,study the performance of the product.The results showed that the water solubility of carboxymethyl chitosan is better than that of chitosan and with excellent performance,and the performance of carboxymethyl chitosan calcium and carboxymethyl chitosan zinc was better than that of carboxymethyl chitosan.


Author(s):  
K. Boddenberg ◽  
B. Kock ◽  
M. Dorfman ◽  
L. Russo ◽  
M. Nestler

Abstract Air separation plants use centrifugal compressors where air and electrical energy are the only raw materials used in the production process. So energy costs play a crucial role and the compressors are heavily penalized when guaranteed performance levels are not achieved. In order to better generate performance, abradable coatings, previously used in the gas turbine industry, have been designed into turbocompressors. This paper will show the optimization and performance improvements of a new aluminium silicon-boron nitride material.


2013 ◽  
Vol 690-693 ◽  
pp. 2076-2080
Author(s):  
Zhen Zhong Fan ◽  
Lan Lan Li ◽  
Li Feng Zhang ◽  
Qing Wang Liu

Cationic Gemini surfactant concentration, the inorganic salts added and the pH value of surface tension obtained cationic gemini surfactant critical micelle concentration is 0.4mmol / L;by adding three kinds of inorganic salts NaCl, MgCl2, and Na2SO4 ,which Na2SO4 has the greatest impact on surface tension, followed by MgCl2.The surface minimum tension of the pH ranged from 9 to 11 , indicating that the surface activity of cationic gemini surfactants achieved the highest.


2011 ◽  
Vol 415-417 ◽  
pp. 2345-2348
Author(s):  
Yang Zhang ◽  
Dong Tang ◽  
Rui Xue Duan ◽  
Hong Jun Ni

A new tubular cathode support for Direct Ethanol Fuel Cell (DEFC) was prepared by the gelcasting process using mesocarbon microbead(MCMB) and graphite as the main raw materials. The effects of different graphite doping ratios on tensile strength, bending strength, crushing strength, volume resistivity and shrinkage rate for the prepared tubular cathode support were studied by experimental test. The result showed that the prepared tubular cathode support had very good comprehensive performance. The tubular cathode support with 10% graphite exhibits the best performance such as bending strength 25MPa and resistivity30µΩ•m, and it satisfied the DEFC cathode working conditions and performance requirements.


Sign in / Sign up

Export Citation Format

Share Document