The Influence of Cement Grain Structure on Physical and Mechanical Properties of Cement

2022 ◽  
Vol 906 ◽  
pp. 31-37
Author(s):  
Smbat V. Mazmanyan ◽  
Gayane Papyan ◽  
Tamara Sargsyan ◽  
Armine Baghdagyulyan ◽  
Tatevik Paytyan ◽  
...  

The paper presents the study of morphological characteristics of cement particles and reveals the influence of the structure of the cement grain composition on the physical and mechanical properties of cement. The following portland cements produced by “Hrazdan Cement Corporation” LLC, which have 52,5 MPa and 42,5 MPa compressive strength limit and hydraulic additives up to 20% and over 20% have been used for the experiment: CEM II/ A-P 42,5N, CEM II/ B-P 42,5N, CEM II/A-Q 42,5N, CEM II/B-Q, CEM II/A-L 42,5N, CEM II/B-L 42,5N, CEM II/A-M 42,5N, CEM II/B-M, CEM III/A-S 42,5N and CEM III/B-S 42,5N. Grain distribution in all the samples has been studied using a CILAS laser analyzer. Microscopic analysis of all the fractions has been carried out with the help of James Swift optical microscope. The given grain compositions have undergone chemical analysis in compliance with the requirements of interstate ISO 5382-2019 and ASTM C114-18 standards. Experimental studies and analyses show that the cements with microsilica have the highest value of water-cement ratio-W/C = 0.7, the highest by volume compression are the cements with volcanic slag-4 mm, the beginning of the bonding period is the longest in case of limestone cements - t = 140 minutes, followed by microsilica cements, and in third place there are artificial slag cements, the results of which are as follows: 130; 124 minutes. The summarized data show that microsilica cements have the highest compressive strength limit among the cements having the same percentage of additives-48.87 MPa.

Author(s):  
R. S. Syryamkin ◽  
Yu. A. Gorbunov ◽  
S. B. Sidelnikov ◽  
A. Yu. Otmahova

The analysis of scientific and technical literature and practical data made it possible to found that changes in casting parameters for ingots using different mold designs allows varying the degree of ingot grain structure refinement in a sufficiently wide range, which should be reflected in the conditions of aluminum alloy profile extrusion as well as physical and mechanical properties of these profiles. Therefore, the purpose of the research was to assess the influence of the degree of grain structure refinement for Alloy 6063 ingots on extrusion deformation and speed parameters and mechanical properties of profiles produced. The study used several batches of Alloy 6063 ingots 178 mm in diameter cast under industrial conditions, as well as profiles obtained by direct extrusion on a 18 MN horizontal hydraulic press subjected to quenching and aging. The grain size in homogenized ingots was estimated by light microscopy using the Olimpus optical microscope, and mechanical properties tests were carried out using the Inspect 20 kN-1 universal test machine. It was found that the initial grain size in the ingot structure exerts a significant influence both on ingot plasticity during extrusion, and on the final structure and mechanical properties of profile products made of aluminum alloys. Having analyzed the results obtained, we can conclude that the increase in strength characteristics of products extruded from ingots with a more refined structure is due to the fact that fine grains are retained in the structure of metal after its deformation, and cast metal plasticity increases with the degree of grain structure refinement in the ingot. This leads to the higher efficiency of profile product hardening and metal outflow rate during extrusion.


2021 ◽  
Vol 62 (4) ◽  
pp. 340-348
Author(s):  
Leonid Dvorkin ◽  
Lyudmila Nihaeva

The paper presents the results of experimental studies of the possibility of obtaining modified supersulfate cements (SSC) with improved physical and mechanical properties on lowalumina blast-furnace granular slags. It has been shown in comparative experimental tests of the effect of admixtures of various sulfate activators that the highest strength of cements is achieved when using a phosphogypsum neutralized with lime. An additional activating effect has been established for supersulfated cements with the introduction of admixtures fluorides and, in particular, fluorides of magnesium, calcium and sodium silicofluoride. The additional introduction of hardening accelerators and their compositions with a superplasticizer into the SSC composition makes it possible to increase the compressive strength of cements at 28 days of age up to 60-65 MPa while achieving high strength at an early age. Along with standard tests, experiments were performed using mathematical planning with obtaining adequate regression equations.


2015 ◽  
Vol 744-746 ◽  
pp. 1543-1546
Author(s):  
Le Le Yu ◽  
Jia Dai Chen ◽  
Yi Wen Wu

Ceramsite concrete and ceramsite concrete block are characterized by lightweight, high strength and good thermal insulation properties, which are widely applied to construction. If amoderate amount of polystyrene particles is added during the working process of ceramsite concrete block in order to improve its physical properties, a kind of new ceramsite concrete building materials is produced. Based on the experimental studies, the article expounds the physical and mechanical properties in terms of density, water absorption and compressive strength, with the purpose of providing reliable evidence for the application and popularization of new ceramsite concrete block.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 523-540
Author(s):  
Imed Beghoura ◽  
Joao Castro-Gomes

This study focuses on the development of an alkali-activated lightweight foamed material (AA-LFM) with enhanced density. Several mixes of tungsten waste mud (TWM), grounded waste glass (WG), and metakaolin (MK) were produced. Al powder as a foaming agent was added, varying from 0.009 w.% to 0.05 w.% of precursor weight. Expanded granulated cork (EGC) particles were incorporated (10% to 40% of the total volume of precursors). The physical and mechanical properties of the foamed materials obtained, the effects of the amount of the foaming agent and the percentage of cork particles added varying from 10 vol.% to 40% are presented and discussed. Highly porous structures were obtained, Pore size and cork particles distribution are critical parameters in determining the density and strength of the foams. The compressive strength results with different densities of AA-LFM obtained by modifying the foaming agent and cork particles are also presented and discussed. Mechanical properties of the cured structure are adequate for lightweight prefabricated building elements and components.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


2020 ◽  
pp. 451-457
Author(s):  
Aleksandr Yur'yevich Vititnev ◽  
Yuriy Davydovich Alashkevich ◽  
Natal'ya Geral'dovna Chistova ◽  
Roman Aleksandrovich Marchenko ◽  
Venera Nurullovna Matygullina

This paper presents the results of experimental studies of the physical and mechanical properties of wood-fiber boards of the wet production method when regulating the design and technological parameters of the grinding process. This allowed us to determine the influence of the working clearance between the grinding discs and the concentration of fibre mass with the subject to of quality change wood fiber after defibrator using the developed construction of the disc fibrillation action on the physico-mechanical properties of boards. As a result of the experiment, regression models were obtained that adequately describe the studied grinding process and allow predicting the values of physical and mechanical properties of the finished product depending on the established  parameters process. A comparative analysis of the size and quality characteristics of the fiber semi-finished product and its fractional composition when using a developed construction the disc of refiner fibrillation action and a traditional design used in industry is carried out. The preferential efficiency of the grinding process under the fibrillating effect the disc of refiner in comparison with the traditional construction disc of refiner is established. As a result, there is a significant improvement in the quality indicators of the fiber semi-finished product and its composition due to the formation and predominance in the total mass of long and thin, respectively, flexible fibrillated fibers with high tile-forming properties, which allows to increase the strength properties of the product (by 20–25%), without using binding resins.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Neslihan Doğan-Sağlamtimur ◽  
Adnan Güven ◽  
Ahmet Bilgil

Pumice, cements (CEM I- and CEM II-type), waste fly and bottom ashes (IFA, GBA, and BBA) supplied from international companies were used to produce lightweight building materials, and physical-mechanical properties of these materials were determined. Axial compressive strength (ACS) values were found above the standards of 4 and 8 MPa (Bims Concrete (BC) 40 and 80 kgf/cm2 class) for cemented (CEM I) pumice-based samples. On the contrary, the ACS values of the pumice-based cemented (CEM II) samples could not be reached to these standards. Best ACS results (compatible with BC80) from these cemented lightweight material samples produced with the ashes were found in 50% mixing ratio as 10.6, 13.2, and 20.5 MPa for BBA + CEM I, GBA + CEM II, and IFA + CEM I, respectively, and produced with pumice were found as 8.4 MPa (same value) for GBA + pumice + CEM II (in 25% mixing ratio), BBA + pumice + CEM I (in 100% mixing ratio), and pumice + IFA + CEM I (in 100% mixing ratio), respectively. According to the results, cemented ash-based lightweight building material produced with and without pumice could widely be used for constructive purposes. As a result of this study, an important input to the ecosystem has been provided using waste ashes, whose storage constitutes a problem.


Author(s):  
Haopeng Jiang ◽  
Annan Jiang ◽  
Fengrui Zhang

Experimental tests were conducted to study the influence of natural cooling and water cooling on the physical and mechanical properties of quartz sandstone. This study aims to understand the effect of different cooling methods on the physical and mechanical properties of quartz sandstone (such as mass, volume, density, P-wave velocity, elastic modulus, uniaxial compressive strength, etc.). The results show that the uniaxial compressive strength (UCS) and elastic modulus(E) of the specimens cooled by natural-cooling and water-cooling decrease with heating temperature. At 800℃, after natural cooling and water cooling, the average value of UCS decreased by 34.65% and 57.90%, and the average value of E decreased by 87.66% and 89.05%, respectively. Meanwhile, scanning electron microscope (SEM) images were used to capture the development of microcracks and pores within the specimens after natural-cooling and water-cooling, and it was found that at the same temperature, water cooling treatment was more likely to cause microcracks and pores, which can cause more serious damage to the quartz sandstone. These results confirm that different cooling methods have different effects on the physical and mechanical properties of quartz sandstone, and provide a basis for the stability prediction of rock mass engineering such as tunnel suffering from fire.


Sign in / Sign up

Export Citation Format

Share Document