Three Dimensional Analysis of Turnoff Operation of SiC Buried Gate Static Induction Transistors (BG-SITs)

2008 ◽  
Vol 600-603 ◽  
pp. 1075-1078 ◽  
Author(s):  
Koji Yano ◽  
Yasunori Tanaka ◽  
Tsutomu Yatsuo ◽  
Akio Takatsuka ◽  
Mitsuo Okamoto ◽  
...  

The turnoff mechanism of SiC buried gate static induction transistors (SiC-BGSITs) were analyzed by three dimensional device simulation. A current crowding occurs in the portion near the channel center away from the gate contact during the initial phase of the turnoff operation, which is resulted from a non-uniform potential distribution through the gate finger with the displacement current flowing there. This increases the turnoff delay time. The impact of source length on the turnoff performance was made clear.

2006 ◽  
Vol E89-C (12) ◽  
pp. 1765-1770 ◽  
Author(s):  
N. OHASHI ◽  
M. NAKAMURA ◽  
N. MURAISHI ◽  
M. SAKAI ◽  
K. KUDO

2009 ◽  
Vol 615-617 ◽  
pp. 739-742 ◽  
Author(s):  
Koji Yano ◽  
Yasunori Tanaka ◽  
Tsutomu Yatsuo ◽  
Akio Takatsuka ◽  
Kazuo Arai

Short-circuit capabilities of silicon carbide static induction transistors with the buried gate structures (BGSITs) have been measured for the first time, and have been followed by 2D device simulations. The short-circuit operation of the normally-on type BGSITs is characterized by an abrupt decrease in the output current through a high peak in the initial phase of the short-circuit period, which is distinguished from that of the conventional IGBTs and power MOSFETs. This operation is caused by the inherent operation of the SITs including the non-saturating current-voltage characteristics with the unipolar operation. Decreasing the channel width adequately is a useful method to increase the short-circuit capability.


Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cui Wang ◽  
Ling Cai ◽  
Yaojian Wu ◽  
Yurong Ouyang

AbstractIntegrated renovation projects are important for marine ecological environment protection. Three-dimensional hydrodynamics and water quality models are developed for the Maowei Sea to assess the hydrodynamic environment base on the MIKE3 software with high resolution meshes. The results showed that the flow velocity changed minimally after the project, decreasing by approximately 0.12 m/s in the east of the Maowei Sea area and increasing by approximately 0.01 m/s in the northeast of the Shajing Port. The decrease in tidal prism (~ 2.66 × 106 m3) was attributed to land reclamation, and accounted for just 0.86% of the pre-project level. The water exchange half-life increased by approximately 1 day, implying a slightly reduced water exchange capacity. Siltation occurred mainly in the reclamation and dredging areas, amounting to back-silting of approximately 2 cm/year. Reclamation project is the main factor causing the decrease of tidal volume and weakening the hydrodynamics in Maowei Sea. Adaptive management is necessary for such a comprehensive regulation project. According to the result, we suggest that reclamation works should strictly prohibit and dredging schemes should optimize in the subsequent regulation works.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Hamid Ait Said ◽  
Hassan Noukrati ◽  
Hicham Ben Youcef ◽  
Ayoub Bayoussef ◽  
Hassane Oudadesse ◽  
...  

Three-dimensional hydroxyapatite-chitosan (HA-CS) composites were formulated via solid-liquid technic and freeze-drying. The prepared composites had an apatitic nature, which was demonstrated by X-ray diffraction and Infrared spectroscopy analyses. The impact of the solid/liquid (S/L) ratio and the content and the molecular weight of the polymer on the composite mechanical strength was investigated. An increase in the S/L ratio from 0.5 to 1 resulted in an increase in the compressive strength for HA-CSL (CS low molecular weight: CSL) from 0.08 ± 0.02 to 1.95 ± 0.39 MPa and from 0.3 ± 0.06 to 2.40 ± 0.51 MPa for the HA-CSM (CS medium molecular weight: CSM). Moreover, the increase in the amount (1 to 5 wt%) and the molecular weight of the polymer increased the mechanical strength of the composite. The highest compressive strength value (up to 2.40 ± 0.51 MPa) was obtained for HA-CSM (5 wt% of CS) formulated at an S/L of 1. The dissolution tests of the HA-CS composites confirmed their cohesion and mechanical stability in an aqueous solution. Both polymer and apatite are assumed to work together, giving the synergism needed to make effective cylindrical composites, and could serve as a promising candidate for bone repair in the orthopedic field.


2021 ◽  
pp. 152692482110028
Author(s):  
Janice Jene Hudgins ◽  
Allison Jo Boyer ◽  
Kristen Danielle Orr ◽  
Clint Allen Hostetler ◽  
Jeffrey Paul Orlowski ◽  
...  

The COVID-19 pandemic has been well-documented to have a variable impact on individual communities and health care systems. We describe the experience of a single organ procurement organization (OPO), located in an area without a large cluster of cases during the initial phase of the COVID-19 pandemic. A review of community health data describing the impact of COVID-19 nationally and in Oklahoma was conducted. Additionally, a retrospective review of available OPO data from March 2019-May 2020 was performed. While the amount of donor referrals received and organs recovered by the OPO remained stable in the initial months of the pandemic, the observed organs transplanted vs. expected organs transplanted (O:E) decreased to the lowest number in the 15-month period and organs transplanted decreased as well. Fewer organs from Oklahoma donors were accepted for transplant despite staff spending more time allocating organs.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 154.1-154
Author(s):  
M. Pfeiffenberger ◽  
A. Damerau ◽  
P. Hoff ◽  
A. Lang ◽  
F. Buttgereit ◽  
...  

Background:Approximately 10% of fractures lead to significant fracture healing disorders, with a tendency to further increase due to the aging population. Of note, especially immunosuppressed patients with ongoing inflammation show difficulties in the correct course of fracture healing leading to fracture healing disorders. Most notably, invading immune cells and secreted cytokines are considered to provide an inflammatory microenvironment within the fracture gap, primarily during the initial phase of fracture healing. Current research has the focus on small animal models, facing the problem of translation towards the human system. In order to improve the therapy of fracture healing disorders, we have developed a human cell-basedin vitromodel to mimic the initial phase of fracture healing adequately. This model will be used for the development of new therapeutic strategies.Objectives:Our aim is to develop anin vitro3D fracture gap model (FG model) which mimics thein vivosituation in order to provide a reliable preclinical test system for fracture healing disorders.Methods:To assemble our FG model, we co-cultivated coagulated peripheral blood and primary human mesenchymal stromal cells (MSCs) mimicking the fracture hematoma (FH model) together with a scaffold-free bone-like construct mimicking the bony part of the fracture gap for 48 h under hypoxic conditions (n=3), in order to reflect thein vivosituation after fracture most adequately. To analyze the impact of the bone-like construct on thein vitroFH model with regard to its osteogenic induction capacity, we cultivated the fracture gap models in either medium with or without osteogenic supplements. To analyze the impact of Deferoxamine (DFO, known to foster fracture healing) on the FG model, we further treated our FG models with either 250 µmol DFO or left them untreated. After incubation and subsequent preparation of the fracture hematomas, we evaluated gene expression of osteogenic (RUNX2,SPP1), angiogenic (VEGF,IL8), inflammatory markers (IL6,IL8) and markers for the adaptation towards hypoxia (LDHA,PGK1) as well as secretion of cytokines/chemokines using quantitative PCR and multiplex suspension assay, respectively.Results:We found via histology that both the fracture hematoma model and the bone-like construct had close contact during the incubation, allowing the cells to interact with each other through direct cell-cell contact, signal molecules or metabolites. Additionally, we could show that the bone-like constructs induced the upregulation of osteogenic markers (RUNX2, SPP1) within the FH models irrespective of the supplementation of osteogenic supplements. Furthermore, we observed an upregulation of hypoxia-related, angiogenic and osteogenic markers (RUNX2,SPP1) under the influence of DFO, and the downregulation of inflammatory markers (IL6,IL8) as compared to the untreated control. The latter was also confirmed on protein level (e.g. IL-6 and IL-8). Within the bone-like constructs, we observed an upregulation of angiogenic markers (RNA-expression ofVEGF,IL8), even more pronounced under the treatment of DFO.Conclusion:In summary, our findings demonstrate that our establishedin vitroFG model provides all osteogenic cues to induce the initial bone healing process, which could be enhanced by the fracture-healing promoting substance DFO. Therefore, we conclude that our model is indeed able to mimic correctly the human fracture gap situation and is therefore suitable to study the influence and efficacy of potential therapeutics for the treatment of bone healing disorders in immunosuppressed patients with ongoing inflammation.Disclosure of Interests:Moritz Pfeiffenberger: None declared, Alexandra Damerau: None declared, Paula Hoff: None declared, Annemarie Lang: None declared, Frank Buttgereit Grant/research support from: Amgen, BMS, Celgene, Generic Assays, GSK, Hexal, Horizon, Lilly, medac, Mundipharma, Novartis, Pfizer, Roche, and Sanofi., Timo Gaber: None declared


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Francesco Rizzetto ◽  
Francesca Calderoni ◽  
Cristina De Mattia ◽  
Arianna Defeudis ◽  
Valentina Giannini ◽  
...  

Abstract Background Radiomics is expected to improve the management of metastatic colorectal cancer (CRC). We aimed at evaluating the impact of liver lesion contouring as a source of variability on radiomic features (RFs). Methods After Ethics Committee approval, 70 liver metastases in 17 CRC patients were segmented on contrast-enhanced computed tomography scans by two residents and checked by experienced radiologists. RFs from grey level co-occurrence and run length matrices were extracted from three-dimensional (3D) regions of interest (ROIs) and the largest two-dimensional (2D) ROIs. Inter-reader variability was evaluated with Dice coefficient and Hausdorff distance, whilst its impact on RFs was assessed using mean relative change (MRC) and intraclass correlation coefficient (ICC). For the main lesion of each patient, one reader also segmented a circular ROI on the same image used for the 2D ROI. Results The best inter-reader contouring agreement was observed for 2D ROIs according to both Dice coefficient (median 0.85, interquartile range 0.78–0.89) and Hausdorff distance (0.21 mm, 0.14–0.31 mm). Comparing RF values, MRC ranged 0–752% for 2D and 0–1567% for 3D. For 24/32 RFs (75%), MRC was lower for 2D than for 3D. An ICC > 0.90 was observed for more RFs for 2D (53%) than for 3D (34%). Only 2/32 RFs (6%) showed a variability between 2D and circular ROIs higher than inter-reader variability. Conclusions A 2D contouring approach may help mitigate overall inter-reader variability, albeit stable RFs can be extracted from both 3D and 2D segmentations of CRC liver metastases.


2020 ◽  
Vol 49 (D1) ◽  
pp. D38-D46
Author(s):  
Kyukwang Kim ◽  
Insu Jang ◽  
Mooyoung Kim ◽  
Jinhyuk Choi ◽  
Min-Seo Kim ◽  
...  

Abstract Three-dimensional (3D) genome organization is tightly coupled with gene regulation in various biological processes and diseases. In cancer, various types of large-scale genomic rearrangements can disrupt the 3D genome, leading to oncogenic gene expression. However, unraveling the pathogenicity of the 3D cancer genome remains a challenge since closer examinations have been greatly limited due to the lack of appropriate tools specialized for disorganized higher-order chromatin structure. Here, we updated a 3D-genome Interaction Viewer and database named 3DIV by uniformly processing ∼230 billion raw Hi-C reads to expand our contents to the 3D cancer genome. The updates of 3DIV are listed as follows: (i) the collection of 401 samples including 220 cancer cell line/tumor Hi-C data, 153 normal cell line/tissue Hi-C data, and 28 promoter capture Hi-C data, (ii) the live interactive manipulation of the 3D cancer genome to simulate the impact of structural variations and (iii) the reconstruction of Hi-C contact maps by user-defined chromosome order to investigate the 3D genome of the complex genomic rearrangement. In summary, the updated 3DIV will be the most comprehensive resource to explore the gene regulatory effects of both the normal and cancer 3D genome. ‘3DIV’ is freely available at http://3div.kr.


Sign in / Sign up

Export Citation Format

Share Document