650 V, 7 mΩ 4H-SiC DMOSFETs for Dual-Side Sintered Power Modules

2018 ◽  
Vol 924 ◽  
pp. 822-826
Author(s):  
Jon Q. Zhang ◽  
Matthew McCain ◽  
Brett Hull ◽  
Jeff Casady ◽  
Scott Allen ◽  
...  

In this paper, we present our latest results on 650 V 4H-SiC DMOSFET developments for dual-side sintered power modules in electric drive vehicles. A low specific on-resistance (Rsp,on) of 1.8 mΩ⋅cm2has been achieved on 650 V, 7 mΩ 4H-SiC DMOSFETs at 25°C, which increases to 2.4 mΩ⋅cm2at 150°C. For the first time, the DMOSFET chip is designed specifically for use in dual-side soldering and sintering processes, and a 650 V, 1.7 mΩ SiC DMOSFET multichip half bridge power module has been built using the wirebond-free assembly. Compared to a similarly rated Si IGBT module, the conduction and switching losses were reduced by 80% and ~50%, respectively.

2017 ◽  
Vol 2017 (1) ◽  
pp. 000247-000251
Author(s):  
Liqi Zhang ◽  
Suxuan Guo ◽  
Pengkun Liu ◽  
Alex Q. Huang

Abstract SiC MOSFET-gate driver integrated power module is proposed to provide ultra-low stray inductance compared to traditional TO-247 or TO-220 packages. Kelvin connection eliminates the common source stray inductance and zero external gate resistor enables faster switching. This module can be operated at MHz switching frequency for high power applications with lower switching losses than discrete packages. Two different gate drivers and two different SiC MOSFETs are grouped and integrated into three integrated power modules. Comparative evaluation and analysis of gate driver impacts on switching speed of SiC MOSFET is shown in detail. The paper provides an insight of the gate driver impacts on the device switching performance in an integrated power module.


2012 ◽  
Vol 717-720 ◽  
pp. 1147-1150
Author(s):  
Nii Adotei Parker-Allotey ◽  
Dean P. Hamilton ◽  
Olayiwola Alatise ◽  
Michael R. Jennings ◽  
Philip A. Mawby ◽  
...  

This paper will demonstrate how the newer Silicon Carbide material semiconductor power devices can contribute to carbon emissions reduction and the speed of adoption of electric vehicles, including hybrids, by enabling significant increases in the driving range. Two IGBT inverter leg modules of identical power rating have been manufactured and tested. One module has silicon-carbide (SiC) Schottky diodes as anti-parallel diodes and the other silicon PiN diodes. The power modules have been tested and demonstrate the superior electrothermal performance of the SiC Schottky diode over the Si PiN diode leading to a reduction in the power module switching losses.


2011 ◽  
Vol 679-680 ◽  
pp. 583-586 ◽  
Author(s):  
David C. Sheridan ◽  
Andrew Ritenour ◽  
Volodymyr Bondarenko ◽  
Jeff B. Casady ◽  
Robin L. Kelley

This work presents the progress in developing an all SiC based power module for use in high frequency and high efficiency applications. Using parallel combinations of 1200V enhancement mode SiC VJFETs (36mm2) and Schottky diodes (23mm2), a total on-resistance of only 10mOhm (2.7m-cm2) was achieved at ID=100A in a commercially available standard module configured as a half-bridge circuit. Careful attention to module layout, gate driver design, and the addition of optimized snubbers resulted in excellent switching waveforms with low total switching losses of 1.25mJ when switching 100A at 150oC.


2010 ◽  
Vol 645-648 ◽  
pp. 1167-1170 ◽  
Author(s):  
Jochen Hilsenbeck ◽  
Zhang Xi ◽  
Daniel Domes ◽  
Kathrin Rüschenschmidt ◽  
Michael Treu ◽  
...  

Starting with the production of Infineon´s first silicon carbide (SiC) Schottky diodes in 2001, a lot of progress was achieved during recent years. Currently, a 3rd generation of MPS (merged pn Schottky) diodes is commercially available combining tremendous improvements with respect to surge current capability and reduced thermal resistance. In this work we present the implementation of SiC switches in power modules and a comparison of these units with the corresponding Si-based power modules. Also the frequency dependence of the total losses of the 1200V configurations using Si-IGBTs or SiC-JFETs as active device is shown, indicating that modules solution with a state of the art SiC JFET outperforms all other options for switching frequencies of 20 kHz and beyond. Additionally a total loss vs. frequency study will be presented. Furthermore, it is show that the switching losses of JFET based modules can be further reduced by reducing the internal distributed gate resistivity.


2005 ◽  
Vol 128 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Hua Ye ◽  
Harry Efstathiadis ◽  
Pradeep Haldar

Understanding the thermal performance of power modules under liquid nitrogen cooling is important for the design of cryogenic power electronic systems. When the power device is conducting electrical current, heat is generated due to Joule heating. The heat needs to be efficiently dissipated to the ambient in order to keep the temperature of the device within the allowable range; on the other hand, it would be advantageous to boost the current levels in the power devices to the highest possible level. Projecting the junction temperature of the power module during cryogenic operation is a crucial step in designing the system. In this paper, we present the thermal simulations of two different types of power metal-oxide semiconductor field effect transistor modules used to build a cryogenic inverter under liquid nitrogen pool cooling and discussed their implications on the design of the system.


2021 ◽  
Author(s):  
Hayden Carlton ◽  
John Harris ◽  
Alexis Krone ◽  
David Huitink ◽  
Md Maksudul Hossain ◽  
...  

Abstract The need for high power density electrical converters/inverters dominates the power electronics realm, and wide bandgap semiconducting materials, such as gallium nitride (GaN), provide the enhanced material properties necessary to drive at higher switching speeds than traditional silicon. However, lateral GaN devices introduce packaging difficulties, especially when attempting a double-sided cooled solution. Herein, we describe optimization efforts for a 650V/30A, GaN half-bridge power module with an integrated gate driver and double-sided cooling capability. Two direct bonded copper (DBC) substrates provided the primary means of heat removal from the module. In addition to the novel topology, the team performed electrical/thermal co-design to increase the multi-functionality of module. Since a central PCB comprised the main power loop, the size and geometry of the vias and copper traces was analyzed to determine optimal functionality in terms of parasitic inductance and thermal spreading. Thermally, thicker copper layers and additional vias introduced into the PCB also helped reduce hot spots within the module. Upon fabrication of the module, it underwent electrical characterization to determine switching performance, as well as thermal characterization to experimentally measure the total module’s thermal resistance. The team successfully operated the module at 400 V, 30 A with a power loop parasitic inductance of 0.89 nH; experimental thermal measurements also indicated the module thermal resistance to be 0.43 C/W. The overall utility of the design improved commensurately by introducing simple, yet effective electrical/thermal co-design strategies, which can be applied to future power modules.


2014 ◽  
Vol 986-987 ◽  
pp. 823-827
Author(s):  
Qing Yuan Zheng ◽  
Min You Chen ◽  
Bing Gao ◽  
Nan Jiang

Reliability of IGBT power module is one of the biggest concerns regarding wind power system, which generates the non-uniform distribution of temperature and thermal stress. The effects of non-uniform distribution will cause failure of IGBT module. Therefore, analysis of thermal mechanical stress distribution is crucially important for investigation of IGBT failure mechanism. This paper uses FEM method to establish an electrical-thermal mechanical coupling model of IGBT power module. Firstly, thermal stress distribution of solder layer is studied under power cycling. Then, the effects of initial failure of solder layer on the characteristic of IGBT module is investigated. Experimental results indicate that the strain energy density and inelastic strain are higher which will reduce reliability and lifetime of power modules.


Author(s):  
Erick Gutierrez ◽  
Kevin Lin ◽  
Douglas DeVoto ◽  
Patrick McCluskey

Abstract Insulated gate bipolar transistor (IGBT) power modules are devices commonly used for high-power applications. Operation and environmental stresses can cause these power modules to progressively degrade over time, potentially leading to catastrophic failure of the device. This degradation process may cause some early performance symptoms related to the state of health of the power module, making it possible to detect reliability degradation of the IGBT module. Testing can be used to accelerate this process, permitting a rapid determination of whether specific declines in device reliability can be characterized. In this study, thermal cycling was conducted on multiple power modules simultaneously in order to assess the effect of thermal cycling on the degradation of the power module. In-situ monitoring of temperature was performed from inside each power module using high temperature thermocouples. Device imaging and characterization were performed along with temperature data analysis, to assess failure modes and mechanisms within the power modules. While the experiment aimed to assess the potential damage effects of thermal cycling on the die attach, results indicated that wire bond degradation was the life-limiting failure mechanism.


Author(s):  
Mitsuaki Kato ◽  
Takahiro Omori ◽  
Akihiro Goryu ◽  
Tomoya Fumikura ◽  
Kenji Hirohata

Abstract Power modules are being developed to increase power output. The larger current densities accompanying increased power output are expected to degrade solder joints in power modules by electromigration. In previous research, numerical analysis of solder for electromigration has mainly examined ball grid arrays in flip-chip packages in which many solder balls are bonded under the semiconductor device. However, in a power module, a single solder joint is uniformly bonded under the power device. Because of this difference in geometric shape, the effect of electromigration in the solder of power modules may be significantly different from that in the solder of flip chips packages. This report describes an electromigration analysis of solder joints for power modules using an electrical-thermal-stress coupled analysis. First, we validate our numerical implementation and show that it can reproduce the vacancy concentrations and hydrostatic stress almost the same as the analytical solutions. We then simulate a single solder joint to evaluate electromigration in a solder joint in a power module. Once inelastic strain appears, the rate of increase in vacancy concentration slows, while the inelastic strain continuously increases. This phenomenon demonstrates that elastic-plastic-creep analysis is crucial for electromigration analysis of solder joints in power modules. Next, the solder joint with a power device and a substrate as used in power modules was simulated. Plasticity-creep and longitudinal gradient generated by current crowding have a strong effect on significantly reducing the vacancy concentration at the anode edge over a long period of time.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000289-000296 ◽  
Author(s):  
James D. Scofield ◽  
J. Neil Merrett ◽  
James Richmond ◽  
Anant Agarwal ◽  
Scott Leslie

A custom multi-chip power module packaging was designed to exploit the electrical and thermal performance potential of silicon carbide MOSFETs and JBS diodes. The dual thermo-mechanical package design was based on an aggressive 200°C ambient environmental requirement and 1200 V blocking and 100 A conduction ratings. A novel baseplate-free module design minimizes thermal impedance and the associated device junction temperature rise. In addition, the design incorporates a free-floating substrate configuration to minimize thermal expansion coefficient induced stresses between the substrate and case. Details of the module design and materials selection process will be discussed in addition to highlighting deficiencies in current packaging materials technologies when attempting to achieve high thermal cycle life reliability over an extended temperature range.


Sign in / Sign up

Export Citation Format

Share Document