SEM EBSD and TEM Structure Studies of α-Brass after Severe Plastic Deformation Using Equal Channel Rolling Followed by Groove Pressing

2012 ◽  
Vol 186 ◽  
pp. 94-97 ◽  
Author(s):  
Stanislav Rusz ◽  
Jan Dutkiewicz ◽  
Marek Faryna ◽  
Wojciech Maziarz ◽  
Lukasz Rogal ◽  
...  

Commercial brass Ms36, 2mm thick was annealed and deformed in 6 passes in dual rolls equipment with attached equal channel equipment (DRECE). Then, material was deformed again using constrained groove pressing (CGP) by pressing of grooves 4.2 mm thick, and the groove angle of 45 deg. The experiment was performed 8 times (pressing out grooves and straightening at room temperature). Both methods allowed deformation without changing of the thickness of the sample, which was almost constant near 2 mm. The tensile experiment have shown the Yield Strength YS after 8x groove pressing of 210 MPa and Ultimate Tensile Strength UTS increased 27% up to 430 MPa. At the same time total elongation decreased from 34 to 15 %. The structure of the material after DRECE 6 passes was investigated using conventional TEM and have shown only rather uniform distribution of dislocations. After additional 8 groove pressing experiment, frequent, narrow deformation twins were observed accompanied by the formation of subgrains. Orientation imaging microscopy performed have shown average grain size after DRECE process near 5 μm, which decreased after 8 processes of groove pressing down to 2.9 μm. The fraction of low angle boundaries (below 5 deg) decreased after groove pressing down to 73% from 85% after DRECE process and annealing, while the fraction of high angle grain boundaries (>15 deg) increased after groove pressing up to 24% from 14%, however the total length of high angle boundaries increased more than 2 times since grain size decreased. The structure studies have shown rather mild effect on the grain refinement of both methods and they have to be modified to obtain material approaching nanosize range.

2010 ◽  
Vol 667-669 ◽  
pp. 391-396 ◽  
Author(s):  
Jing Bai ◽  
Feng Xue ◽  
Saleh N. Alhajeri ◽  
Terence G. Langdon

Disks of as-extruded Mg-4Nd alloy were processed by high-pressure torsion (HPT) through ¼ to 5 turns at room temperature. The first 1/4 turn of HPT induces large numbers of twins and some dislocation tangles in the center region of the disk. With increase of torsional straining, the twinning is inhibited gradually and the dislocation density increases relating to the formation of dislocation substructures and ultimately transforming to high fractions of equiaxed gains which have an average grain size of ~200 nm and high-angle boundaries. HPT significantly improves the values of microhardness of this alloy. The hardness values in both the central and edge regions show a sharp rise after HPT for 1/4 turn and exhibit nearly saturation after 1/2 turn although there is a trend of a slight increase with increasing numbers of turns. The experimental results suggest more homogeneous microstructures may be produced by larger numbers of turns in the HPT process.


2007 ◽  
Vol 558-559 ◽  
pp. 1435-1441 ◽  
Author(s):  
Andrea di Schino ◽  
Paolo Emilio di Nunzio ◽  
Gustavo Lopez Turconi

To identify the characteristic microstructural length determining the mechanical properties of a quenched and tempered medium-C steel and its dependence on the prior austenite grain size, different tempering treatments have been carried out after a fully martensitic quenching. The resulting microstructures have been analyzed by Orientation Imaging Microscopy (OIM) and two kind of features have been taken into consideration: packets (i.e. domains delimited by high-angle boundaries) and cells (domains bounded by low-angle grain boundaries). The main results can be summarized as follows: 1. A very weak effect of austenite grain size on packet size was found. 2. A finer packet size was measured at mid-thickness with respect to surface after external and internal water quenching process. This phenomenon was attributed to the effect of the strain path on the phase transformation during quenching. 3. The through-thickness microstructural gradient remains substantially unchanged after tempering. 4. Grains with high-angle boundaries do not significantly grow after tempering; on the contrary, low-angle grain boundaries move, fully justifying the hardness evolution with the tempering temperature.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 607
Author(s):  
A. I. Alateyah ◽  
Mohamed M. Z. Ahmed ◽  
Yasser Zedan ◽  
H. Abd El-Hafez ◽  
Majed O. Alawad ◽  
...  

The current study presents a detailed investigation for the equal channel angular pressing of pure copper through two regimes. The first was equal channel angular pressing (ECAP) processing at room temperature and the second was ECAP processing at 200 °C for up to 4-passes of route Bc. The grain structure and texture was investigated using electron back scattering diffraction (EBSD) across the whole sample cross-section and also the hardness and the tensile properties. The microstructure obtained after 1-pass at room temperature revealed finer equiaxed grains of about 3.89 µm down to submicrons with a high density of twin compared to the starting material. Additionally, a notable increase in the low angle grain boundaries (LAGBs) density was observed. This microstructure was found to be homogenous through the sample cross section. Further straining up to 2-passes showed a significant reduction of the average grain size to 2.97 µm with observable heterogeneous distribution of grains size. On the other hand, increasing the strain up to 4-passes enhanced the homogeneity of grain size distribution. The texture after 4-passes resembled the simple shear texture with about 7 times random. Conducting the ECAP processing at 200 °C resulted in a severely deformed microstructure with the highest fraction of submicron grains and high density of substructures was also observed. ECAP processing through 4-passes at room temperature experienced a significant increase in both hardness and tensile strength up to 180% and 124%, respectively.


2006 ◽  
Vol 503-504 ◽  
pp. 311-316 ◽  
Author(s):  
I. Salvatori

Refinement of grain size is one of the biggest challenges to produce steels with improved combination of strength and toughness. Ultrafine structures are being produced world-wide on various materials, including low carbon steel, using different types of processes. However, the majority of these processes also exhibit severe limitations because they are generally restricted to small samples and are difficult to be implemented on an industrial scale. A promising technique for industrial implementation is the Accumulative Roll Bonding (ARB), a process able to supply large samples, even in the laboratory scale. In this paper, warm intense straining (ε = 4) by ARB was applied to a plain low-C steel in order to develop ultrafine grains, aiming at sizes around 1-2 μm, suitable to maintain an adequate combination of strength and ductility. The effect of annealing conditions on the evolution of the work-hardened microstructure and the bonding behaviour after each pass were investigated. Orientation Imaging Microscopy was used to investigate the microstructure and give a quantitative assessment of high angle and low angle boundaries. It is showed that the frequency of high angle grain boundaries increases with the strain but the misorientation distribution remained far from that typical of a recrystallised material.


2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


2006 ◽  
Vol 20 (02) ◽  
pp. 217-231 ◽  
Author(s):  
MUHAMMAD MAQBOOL ◽  
TAHIRZEB KHAN

Thin films of pure silver were deposited on glass substrate by thermal evaporation process at room temperature. Surface characterization of the films was performed using X-ray diffraction (XRD) and atomic force microscopy (AFM). Thickness of the films varied between 20 nm and 72.8 nm. XRD analysis provided a sharp peak at 38.75° from silver. These results indicated that the films deposited on glass substrates at room temperature are crystalline. Three-dimension and top view pictures of the films were obtained by AFM to study the grain size and its dependency on various factors. Average grain size increased with the thickness of the deposited films. A minimum grain size of 8 nm was obtained for 20 nm thick films, reaching 41.9 nm when the film size reaches 60 nm. Grain size was calculated from the information provided by the XRD spectrum and averaging method. We could not find any sequential variation in the grain size with the growth rate.


2010 ◽  
Vol 654-656 ◽  
pp. 2297-2302 ◽  
Author(s):  
George T. Gray III ◽  
Veronica Livescu ◽  
Ellen K. Cerreta

Orientation-imaging microscopy offers unique capabilities to quantify the defects and damage evolution occurring in metals following dynamic and shock loading. Examples of the quantification of the types of deformation twins activated, volume fraction of twinning, and damage evolution as a function of shock loading in Ta are presented. Electron back-scatter diffraction (EBSD) examination of the damage evolution in sweeping-detonation-wave shock loading to study spallation in Cu is also presented.


2011 ◽  
Vol 485 ◽  
pp. 183-186 ◽  
Author(s):  
Tsutomu Furuta ◽  
Saki Hatta ◽  
Yoichi Kigoshi ◽  
Takuya Hoshina ◽  
Hiroaki Takeda ◽  
...  

Freestanding BaTiO3 ceramics films were fabricated using the aerosol deposition (AD) method and the size effect of nanograined BaTiO3 ceramics was demonstrated. Dense BaTiO3 thick film fabricated by the AD method was crystallized and detached from substrate by an annealing treatment at 600 °C, and then the grain size was controlled by a reannealing treatment at various temperatures. As a result, freestanding BaTiO3 thick films with various grain sizes from 24 to 170 nm were successfully obtained. Polarization–electric field (P–E) measurement revealed that BaTiO3 ceramics with grain sizes of more than 58 nm showed ferroelectricity, whereas BaTiO3 ceramics with an average grain size of 24 nm showed paraelectricity at room temperature. Dielectric measurement indicated that the permittivity decreased with decreasing grain size in the range of 170 to 24 nm.


1997 ◽  
Vol 12 (11) ◽  
pp. 3146-3157 ◽  
Author(s):  
Yoshihiro Hirata ◽  
Kouji Hidaka ◽  
Hiroaki Matsumura ◽  
Yasuo Fukushige ◽  
Soichiro Sameshima

Submicrometer-sized SiC coated with SiO2 of 0.4–1.8 wt.% and α–Al2O3 powder of median size 0.2 μm were mixed in aqueous solutions in the pH range 3.0–10.0. The SiC/Al2O3 (4.3–6.9 wt. %) powders were consolidated by filtration through gypsum molds and hot-pressed at 1600°–2040 °C under a pressure of 39 MPa. These compacts were densified to near the theoretical density at 1700°–1800 °C. The sintering mechanisms are discussed based on the analysis of shrinkage curves of SiC/Al2O3 compacts during hot-pressing. The equiaxed SiC grains grew with low aspect ratios below 1800 °C and changed to plate-like grains at 1900 °C. The fracture toughness of SiC as a function of average grain size reached a maximum of 5 Mpa · m0.5 at 2.5 μm grains of low aspect ratios of 1–2. The flexural strengths at room temperature were 230–430 MPa in the SiC above 98% of the theoretical density and showed a similar grain size dependence.


2009 ◽  
Vol 1242 ◽  
Author(s):  
Ramos A. Mitsuo ◽  
Martínez F. Elizabeth ◽  
Negrete S. Jesús ◽  
Torres-Villaseñor G.

ABSTRACTZinalco alloy (Zn-21mass%Al-2mass%Cu) specimens were deformed superplastically with a strain rate (ε) of 1×10-3 s-1 at homologous temperature (TH) of 0.68 (5 ). It was observed neck formation that indicate nonhomegeneus deformation. Grain size and grain boundaries misorientation changes, due superplastic deformation, were characterized by Orientation Imagining Microscopy (OIM) technique. It was studied three regions in deformed specimens and the results were compared with the results for a specimen without deformation. Average grain size of 1 mm was observed in non-deformed specimen and a fraction of 82% for grain boundary misorientation angles with a grain boundaries angles between 15° and 55° was found. For deformed specimen, the fraction of angles between 15° and 55° was decreced to average value of 75% and fractions of low angle (<5°) and high angle (>55°) misorientations were 10% and 15% respectively. The grain size and high fraction of grain boundary misorientation angles between 15° and 55° observed in the alloy without deformation, are favorable for grain rotation and grain boundary sliding (GBS) procces. The changes observed in the fraction of favorable grain boundary angles during superplastic deformation, shown that the superplastic capacity of Zinalco was reduced with the deformation.


Sign in / Sign up

Export Citation Format

Share Document