M-Series with Adaptive Patterning for High-Yield Fan-Out SIP

2016 ◽  
Vol 2016 (DPC) ◽  
pp. 000751-000773
Author(s):  
Craig Bishop ◽  
Suresh Jayaraman ◽  
Boyd Rogers ◽  
Chris Scanlan ◽  
Tim Olson

Fan-Out Wafer Level Packaging (FOWLP) holds immediate promise for packaging semiconductor chips with higher interconnect density than the incumbent Wafer Level Chip Scale Packaging (WLCSP). FOWLP enables size and performance capabilities similar to WLCSP, while extending capabilities to include multi-device system-in-packages. FOWLP can support applications that integrate multiple heterogeneously processed die at lower cost than 2.5D silicon interposer technologies. Current industry challenges with die position yield after die placement and molding result in low-density design rules and the high-cost of accurate die placement. Efficiently handling die shift is essential for making FOWLP cost-competitive with other technologies such as FCCSP and QFN. This presentation will provide an overview of Adaptive Patterning, a new technology for overcoming variability of die positions after placement and molding. In this process, an optical scanner is used to measure the true XY position and rotation of each die after panelization. The die measurements are then fed into a proprietary software engine that generates a unique pattern for each package. The resulting patterns are dispatched to a lithography system, which dynamically implements the unique patterns for all packages within a panel. For system-in-packages, this process offers a unique advantage over a fixed pattern: each die shift can be handled independently. With a fixed pattern, the design tolerances need to be large enough for all die to shift in opposing directions, otherwise yield loss in incurred. With Adaptive Patterning, vias and RDL features remain at minimum size and are matched to the measured die shift. The die-to-die interconnects are dynamically generated and account for the unique position of each die. Thus, Adaptive Patterning retains the same high-density design rules regardless of how many die are in a package. Adaptive Patterning provides the capability to use high-throughput die placement to drive down cost, while enabling higher-density system-in-package interconnect. With this technology the industry can finally realize the cost, flexibility, and form factor benefits of FOWLP.

2015 ◽  
Vol 2015 (1) ◽  
pp. 000079-000085 ◽  
Author(s):  
Michael Toepper ◽  
Tanja Braun ◽  
Robert Gernhardt ◽  
Martin Wilke ◽  
Piotr Mackowiak ◽  
...  

There is a strong demand to increase the routing density of the RDL to match the requirements for future microelectronic systems which are mainly miniaturization and performance. Photo-resists for structuring the metallization or acting as a mold for electroplating are common for very fine lines and spaces due to the developments in the front-end processing. For example chemical amplified Photo-resists are now moving in the back-end and wafer level packaging process. The results are mainly governed by the performance of the equipment i.e. the photo-tool. This is different for the permanent dielectric polymer material. The major difference in photo-resists and dielectric photo-polymer are the different functions of the material systems. Photo-resists are only temporary masks for subsequent process steps like etching and plating. This is different for the photo-polymers which are a permanent part of the future systems. In this paper a new technology is discussed which uses a laser scanning ablation process and BCB-Based Dry Film low k Permanent Polymer. Laser ablation of polymers is in principle not a new technology. Low speed and high cost was the major barrier. But the combination of a scanning technology together with quartz masks has opened this technology to overcome the limitation of the current photo-polymer process. The new technology is described in detail and the results of structuring BCB-Based Films down to less than 4 μm via diameter in a 15 μm thick film has been shown. The via side wall can be controlled by the fluence of the laser pulse. Test structures have been designed and fabricated to demonstrate the excellent electrical resistivity of the vias using a two-layer metallization process.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000721-000726 ◽  
Author(s):  
Chet Palesko ◽  
Amy Lujan

Abstract Fan-out wafer-level packaging (FOWLP) and embedded die packaging offer similar advantages over traditional packaging technologies. For example, both packages can be quite thin since the die is placed early in the manufacturing process and the package is fabricated around the die. This is in contrast to traditional packaging technologies, in which the package is fabricated first, and then the die is placed on top of the package. This results in a thicker package compared to fabricating the package around the die. Due to the ongoing miniaturization market requirements, thinner packages are becoming increasingly important. Both FOWLP and embedded die packaging also provide the capability of placing multiple die and passives in a single package. This capability can have both size and performance benefits since the interconnect distance between the embedded components is shorter. In this paper, the cost and cost drivers of FOWLP and embedded die packaging technologies will be compared. Activity based modeling will be used to characterize the cost of each activity in the two manufacturing flows.


2000 ◽  
Author(s):  
Y. T. Lin ◽  
P. J. Tang ◽  
K. N. Chiang

Abstract The demands of electronic packages toward lower profile, lighter weight, and higher density of I/O lead to rapid expansion in the field of flip chip, chip scale package (CSP) and wafer level packaging (WLP) technologies. The urgent needs of high I/O density and good reliability characteristic lead to the evolution of the ultra high-density type of non-solder interconnection such as the wire interconnect technology (WIT). The new technology using copper posts to replace the solder bumps as interconnections shown a great improvement in the reliability life. Moreover, this type of wafer level package could achieve higher I/O density, as well as ultra fine pitch. This research will focus on the reliability analysis of the WIT package structures in material selection and structural design, etc. This research will use finite element method to analyze the physical behavior of packaging structures under thermal cycling condition to compare the reliability characteristics of conventional wafer level package and WIT packages. Parametric studies of specific parameters will be performed, and the plastic and temperature dependent material properties will be applied to all of the models.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001378-001407
Author(s):  
Tim Mobley ◽  
Roupen Keusseyan ◽  
Tim LeClair ◽  
Konstantin Yamnitskiy ◽  
Regi Nocon

Recent developments in hole formations in glass, metalizations in the holes, and glass to glass sealing are enabling a new generation of designs to achieve higher performance while leveraging a wafer level packaging approach for low cost packaging solutions. The need for optical transparency, smoother surfaces, hermetic vias, and a reliable platform for multiple semiconductors is growing in the areas of MEMS, Biometric Sensors, Medical, Life Sciences, and Micro Display packaging. This paper will discuss the types of glass suitable for packaging needs, hole creation methods and key specifications required for through glass vias (TGV's). Creating redistribution layers (RDL) or circuit layers on both sides of large thin glass wafer poses several challenges, which this paper will discuss, as well as, performance and reliability of the circuit layers on TGV wafers or substrates. Additionally, there are glass-to-glass welding techniques that can be utilized in conjunction with TGV wafers with RDL, which provide ambient glass-to-glass attachments of lids and standoffs, which do not outgas during thermal cycle and allow the semiconductor devices to be attached first without having to reflow at lower temperatures. Fabrication challenges, reliability testing results, and performance of this semiconductor packaging system will be discussed in this paper.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 000545-000566
Author(s):  
John Hunt ◽  
Adren Hsieh ◽  
Eddie Tsai ◽  
Chienfan Chen ◽  
Tsaiying Wang

Nearly half a century ago the first die bumping was developed by IBM that would later enable what we call Wafer Level Packaging. It took nearly 40 years for Wafer Level Chip Scale Packaging (WLCSP), with all of the “packaging” done while still in wafer form to come into volume production. It began with very small packages having solderball counts of 2–6 I/Os. Over the years, the I/O count has grown, but much of the industry perception has remained that WLCSPs are limited to low I/O count, low power applications. But within the last few years, there have been growing demands for WLCSP packages to expand into applications with higher levels of complexity. With the ever increasing density and performance requirements for components in mobile electronic systems, the need has developed for an expansion of applicability for Wafer Level Package (WLP) technology. Wafer Level packaging has demonstrated a higher level of component density and functionality than has been traditionally available using standard packaging. This has led to the development of WLCSPs with larger die and increasing solderball connectivity counts. Development activity has been ongoing for improved materials and structures to achieve the required reliability performance for these larger die. For this study, we have evaluated several different metallic structures used for polymer core solderballs with two different WLCSP structures. The WLCSP structures which were evaluated included a standard 4-mask design with redistribution layer (RDL), using a Polymer 1, Metal RDL, Polymer2, and Under Bump Metallization (UBM); as well as a 3-mask design with RDL, using a Polymer 1, Metal RDL, and Polymer 2. In the first case, the solderballs are bonded to the UBM, while in the second case the balls are bonded to the RDL, using the Polymer 2 layer as the solder wettable defining layer. All of the combinations are tested using the standard JEDEC Temperature Cycling on Board (TCOB) and Drop Test (DT) methodologies. The two different metallurgies of the polymer core solderballs appear to react differently to the two different WLCSP structures. This suggests that the polymer core solderball compositions may perform best when optimized for the specific WLCSP structures that are manufactured. We will review the results of the impact of the different polymer core metallurgies on the TCOB and DT reliability performance of the WLCSPs, showing the interactions of these materials with the two WLCSP structures.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000425-000445
Author(s):  
Paul Siblerud ◽  
Rozalia Beica ◽  
Bioh Kim ◽  
Erik Young

The development of IC technology is driven by the need to increase performance and functionality while reducing size, power and cost. The continuous pressure to meet those requirements has created innovative, small, cost-effective 3-D packaging technologies. 3-D packaging can offer significant advantages in performance, functionality and form factor for future technologies. Breakthrough in wafer level packaging using through silicon via technology has proven to be technologically beneficial. Integration of several key and challenging process steps with a high yield and low cost is key to the general adoption of the technology. This paper will outline the breakthroughs in cost associated with an iTSV or Via-Mid structure in a integrated process flow. Key process technologies enabling 3-D chip:Via formationInsulator, barrier and seed depositionCopper filling (plating),CMPWafer thinningDie to Wafer/chip alignment, bonding and dicing This presentation will investigate these techniques that require interdisciplinary coordination and integration that previously have not been practiced. We will review the current state of 3-D interconnects and the of a cost effective Via-first TSV integrated process.


Author(s):  
Amy Lujan

In recent years, there has been increased focus on fan-out wafer level packaging with the growing inclusion of a variety of fan-out wafer level packages in mobile products. While fan-out wafer level packaging may be the right solution for many designs, it is not always the lowest cost solution. The right packaging choice is the packaging technology that meets design requirements at the lowest cost. Flip chip packaging, a more mature technology, continues to be an alternative to fan-out wafer level packaging. It is important for many in the electronic packaging industry to be able to determine whether flip chip or fan-out wafer level packaging is the most cost-effective option. This paper will compare the cost of flip chip and fan-out wafer level packaging across a variety of designs. Additionally, the process flows for each technology will be introduced and the cost drivers highlighted. A variety of package sizes, die sizes, and design features will be covered by the cost comparison. Yield is a key component of cost and will also be considered in the analysis. Activity based cost modeling will be used for this analysis. With this type of cost modeling, a process flow is divided into a series of activities, and the total cost of each activity is accumulated. The cost of each activity is determined by analyzing the following attributes: time required, labor required, material required (consumable and permanent), capital required, and yield loss. The goal of this cost comparison is to determine which design features drive a design to be packaged more cost-effectively as a flip chip package, and which design features result in a lower cost fan-out wafer level package.


2012 ◽  
Vol 81 ◽  
pp. 55-64 ◽  
Author(s):  
Masayoshi Esashi ◽  
Shuji Tanaka

Technology called MEMS (Micro Electro Mechanical Systems) or microsystems are heterogeneous integration on silicon chips and play important roles as sensors. MEMS as switches and resonators fabricated on LSI are needed for future multi-band wireless systems. MEMS for safety systems as event driven tactile sensor network for nursing robot are developed. Wafer level packaging for MEMS and open collaboration to reduce the cost for the development are discussed.


Author(s):  
Tony Rogers ◽  
Nick Aitken

Wafer bonding is a widely used step in the manufacture of Microsystems, and serves several purposes: • Structural component of the MEMS device. • First level packaging. • Encapsulation of vacuum or controlled gas. In addition the technology is becoming more widely used in IC fabrication for wafer level packaging (WLP) and 3D integration. It is also widely used for the fabrication of micro fluidic structures and in the manufacture of high efficiency LED’s. Depending on the application, temperature constraints, material compatibility etc. different wafer bonding processes are available, each with their own benefits and drawbacks. This paper describes various wafer bonding processes that are applicable, not only to silicon, but other materials such as glass and quartz that are commonly used in MEMS devices. The process of selecting the most appropriate bonding process for the particular application is presented along with examples of anodic, glass frit, eutectic, direct, adhesive and thermo-compression bonding. The examples include appropriate metrology for bond strength and quality. The paper also addresses the benefits of being able to treat the wafer surfaces in-situ prior to bonding in order to improve yield and bond strength, and also discusses equipment requirements for achieving high yield wafer bonding, along with high precision alignment accuracy, good force and temperature uniformity, high wafer throughput, etc. Some common problems that can affect yield are identified and discussed. These include local temperature variations, that can occur with anodic bonding, and how to eliminate them; how to cope with materials of different thermal expansion coefficient; how best to deal with out-gassing and achieve vacuum encapsulation; and procedures for multi-stacking wafers of differing thicknesses. The presentation includes infra-red and scanning acoustic microscopy images of various bond types, plus some examples of what can go wrong if the correct manufacturing protocol is not maintained.


2011 ◽  
Vol 2011 (DPC) ◽  
pp. 001418-001442
Author(s):  
Thomas Uhrmann ◽  
B. Kim ◽  
T. Matthias ◽  
P. Lindner

High brightness LEDs (HB-LEDs) carry a high prospect for general lighting applications. Competing with the cost/performance ratio of current light sources demands an increase of the overall efficiency as well as the reduction of the device cost. Since packaging accounts for 30%–50% of the cost of HB LED manufacturing, moving from die- level to wafer-level processes is one likely potential solution for reducing cost per lumen. Silicon-based WLP, using the established processing technology of the MEMS and IC industry, offers high fabrication reliability, high yield and the direct integration of the driver IC in the package. The already small form factor of WLP can be further reduced using Through-Silicon-Vias (TSV), increasing the maximum amount of chips per wafer. Silicon WLP also offers superior thermal management, with the relatively high thermal conductance of silicon. Redistributing LED dies on silicon wafer submounts, with metal bonding and copper TSVs, further improves the heat conductance away from the active region of the chip, resulting in increased device performance. Wafer-level optics can further improve performance and reduce packaging costs. Wafer-level lens molding based on imprint lithography is in high volume manufacture for cell phone camera modules. It allows creation of spherical and a-spherical lenses as well as lens stacks with minimized form factor. In contrast to the currently applied drop dispensing technique for LED lens fabrication, the shape of the lens can be accurately tailored and the decrease of the lens size results in lower absorption and higher light output. Most of these technologies are already in high volume production in other sectors. We will discuss the field proven solutions at each process step, from the formation of the silicon interposer, through the chip-to-wafer bonding, to the final imprinting of the wafer-level optics.


Sign in / Sign up

Export Citation Format

Share Document