scholarly journals In-vitro antibacterial activity of cinnamon bark extracts on clinical multi-drug resistant (mdr) Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa isolates

2021 ◽  
Vol 14 (1) ◽  
pp. 38-44
Author(s):  
F.Z. Idris ◽  
U.A. Habibu

The present study was conducted to investigate antimicrobial activity of ethanol, dichloromethane and n-hexane extracts of Cinnamomum verum stem bark against Multi-drug resistant clinical isolates. C. verum bark powder was extracted with ethanol, dichloromethane and hexane respectively using Soxhlet extractor for 6 hrs. at temperature not exceeding the boiling point of the respective solvents. The extracts were further subjected to phytochemical screening as well as antimicrobial tests against clinical isolates of confirmed multi-drug resistant Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa using agar well diffusion method. Minimum inhibitory concentrations (MICs) and Minimum bactericidal concentrations (MBCs) were also determined. The extracts yield 11.8g, 10.2g and 9.0g for ethanol, dichloromethane and hexane respectively. The results of phytochemical screening indicated the presence of alkaloids, reducing sugars, saponins, steroids, cardiac glycoside, flavonoid, anthraquinones and tannins in the extracts. The ethanolic extracts showed the highest antimicrobial activity of 12.3±0.5mm against P. aeruginosa and 15.3±1.3mm against K. pneumoniae at 100mg/ml and antibacterial activities of 11.3±0.5mm against K. pneumoniae followed by 9.0±0.4mm against Pseudomonas aeruginosa and the least 8.0±0.0mm against Staphylococcus aureus at 20mg/ml concentration. While hexane extract of the plant has the highest activity of 9.0±0.0mm against Staphylococcus aureus isolates but less active against the remaining isolates at 20mg/ml concentration. Dichloromethane extract was less active against all the MDR isolates. The results showed that the MICs of C. verum ranged from 5-20 mg/ml while the MBCs ranged from 10-40 mg/ml. Thus C. verum could be used as potential source of antibacterial agents against MDR microbes.

2019 ◽  
Vol 18 (2) ◽  
pp. 223-232
Author(s):  
AO Shittu ◽  
A Aliyu ◽  
MS David ◽  
NS Njinga ◽  
HI Ishaq

In order to authenticate and ascertain the various claim by the rural dwellers that depend on chewing sticks for their oral hygiene and protection against innumerable diseases, the antibacterial activity of the roots of Fagara zanthoxyloides and Distemonanthus benthamianus were evaluated. Preliminary phytochemical screening was carried out using standard methods. In-vitro antibacterial activity of the methanol extracts of both plants was also carried out using the agar well diffusion method against standard strains of Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Salmonella typhii ATCC 14028, Citrobacter freundii ATCC 8090 and also some clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis at different concentrations and ratios. Preliminary phytochemical screening showed that the extracts contained alkaloids, saponin, tannins, steroids, flavonoids, anthraquinones, cardiac glycosides and phenol. All the test microorganisms were susceptible to the inhibitory effect of the extracts at concentrations of 200 mg/ml and 500 mg/ml. F. zanthoxyloides had better antimicrobial activity with zones of inhibition ranging from 21.0 to 26.0 mm at 200 mg/ml and 24.3 to 29.3 mm at 500 mg/ml while D. benthamianus had zones of inhibition ranging from 17.7 to 26.7 mm at 200 mg/mL and 19.0 to 26.7 mm at 500 mg/mL. Some of the test microorganisms were resistant to the standard antibiotics (cefuroxime, ciprofloxacin, ofloxacin and gentamicin). Combinations of the extracts in ratios 50:50 and 75:25 yielded no increase in activity. The MIC and MBC for D. benthamianus ranged from 6.25 mg/ml to 100 mg/mL and 25 to 200 mg/ml, respectively while that of F. zanthoxyloides ranged from 1.56 mg/ml to 12.5 mg/mL and 50 to 200 mg/ml, respectively. The antimicrobial activity demonstrated by F. zanthoxyloides and D. benthamianus indicates that they would be valuable in the management of urinary, respiratory and gastrointestinal tracts infections while at the same time helping to mitigate the problem of antimicrobial resistance. Phenolic compounds of plants, among them flavonoids are the chief constituents, which have potent antioxidant activities Dhaka Univ. J. Pharm. Sci. 18(2): 223-232, 2019 (December)


2018 ◽  
Vol 10 (1) ◽  
pp. 26-32
Author(s):  
Ibikunle Ibitayo ANIBIJUWON ◽  
Ifeoluwa Deborah GBALA ◽  
Bright Ifeanyi NNADOZIE ◽  
Olubukola IFAYEFUMI

The present study evaluated the antibacterial effects of the methanolic, ethanolic and aqueous extracts of Senna alata leaves. The extracts were tested using agar well diffusion method against selected clinical isolates: Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae. Antibiogram profile of the isolates deduced by disc diffusion method confirmed that the methanolic extract inhibited the growth of all tested organisms except for Klebsiella pneumoniae, which also showed no sensitivity to the ethanolic extract. There was no inhibition observed for the aqueous extract against all the tested organisms, indicating that the methanolic extract of the plant was more potent than the aqueous extract. Inhibitory activities were observed for gentamicin, ofloxacin and erythromycin against Staphylococcus aureus and Escherichia coli. No inhibitory activity was observed in all the antibiotics against Pseudomonas aeruginosa. In Klebsiella pneumoniae, inhibition was only observed in ofloxacin. The activity of both the methanolic and ethanolic extract of Senna alata was optimal under different concentrations, but gradually diminished as the concentration was adjusted. The activity of the plant extracts against the selected bacteria is an indication of the presence of broad spectrum bioactive compounds which could be explored in the therapy of bacterial infections.


2019 ◽  
Vol 17 (3) ◽  
pp. 140-148 ◽  
Author(s):  
A. Ouelhadj ◽  
L. Ait Salem ◽  
D. Djenane

Ce travail vise l’étude de l’activité antibactérienne de l’huile essentielle (HE) de Pelargoniumx asperum et de la bactériocine, la nisine seul et en combinaison vis-à-vis de six bactéries dont quatre sont multirésistantes d’origine clinique. L’activité antibactérienne in vitro a été évaluée par la méthode de diffusion sur gélose. La concentration minimale inhibitrice (CMI) est aussi déterminée pour HE. Les résultats ont révélé une activité antibactérienne significative exercée par HE visà-vis de Staphylococcus aureus (ATCC 43300), Staphylococcus aureus et Escherichia coli avec des diamètres d’inhibition de 36,00 ; 22,50 et 40,00 mm, respectivement. Cependant, l’HE de Pelargonium asperum a montré une activité antibactérienne supérieure par rapport à la nisine. Les valeurs des CMI rapportées dans cette étude sont comprises entre 1,98–3,96 μl/ml. Les combinaisons réalisées entre HE et la nisine ont montré un effet additif vis-à-vis de Escherichia coli (ATCC 25922) avec (50 % HE Pelargonium asperum + 50 % nisine). Par contre, nous avons enregistré une synergie vis-à-vis de Klebsiella pneumoniae avec (75 % HE Pelargonium asperum + 25 % nisine) et contre Pseudomonas aeruginosa avec les trois combinaisons testées. Les résultats obtenus permettent de dire que l’HE de Pelargonium asperum possède une activité antibactérienne ainsi que sa combinaison avec la nisine pourrait représenter une bonne alternative pour la lutte contre l’antibiorésistance.


2016 ◽  
Vol 11 (31) ◽  
pp. 113-122
Author(s):  
Carla Franco Porto Belmont Souza ◽  
Luiz Eduardo Souza da Silva Irineu ◽  
Renan Silva De Souza ◽  
Renato da Silva Teixeira ◽  
Ivina Sanches Pereira ◽  
...  

A resistência microbiana tem se mostrado um problema de proporções mundiais, causando estado de morbidade e mortalidade em diversos pacientes. Em vista disso, tem crescido a busca por métodos alternativos naturais de profilaxia. A investigação clínica sugere que o Extrato de Cranberry está entre as melhores propostas de prevenção natural. O Cranberry (Vaccinium macrocarpon) é um fruto que tem crescido comercialmente pelo sabor e propriedades benéficas à saúde. Dentre as formas comercializadas estão: o suco, o chá e as cápsulas contendo o extrato seco. A ação desta planta está relacionada ao tratamento de doenças do trato urinário, por possuir substâncias que inibem a adesão bacteriana ao epitélio do trato urinário, dificultando sua proliferação e reprodução. Dentre todas as infecções relacionadas à assistência a saúde, a Infecção do Trato Urinário é a mais frequentemente associada a procedimentos invasivos. Se não for tratada, pode resultar em complicações como pielonefrite aguda, bacteremia e pionefrose. Portanto, cranberry pode ser uma nova alternativa para o combate das infecções uroepiteliais, por ser um produto natural de preço acessível, e com formas de comercialização diversificada, ao contrário dos antimicrobianos convencionais, que por sua vez são caros e podem acabar causando resistência nos micro-organismos. Este trabalho teve como objetivo avaliar in vitro a atividade antimicrobiana do extrato de Cranberry, adquirido em farmácia de manipulação, sobre 8 micro-organismos isolados de infecções urinárias. As cepas utilizadas, adquiridas da coleção da FIOCRUZ, foram: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Serratia marscecens, Staphylococcus aureus, Enterococcus faecalis e Enterococcus faecium. No estudo, foram utilizados o caldo Mueller Hinton (MH), Extrato de Cranberry e as bactérias patogênicas. O ensaio foi realizado em triplicata, com o uso de um controle de crescimento dos micro-organismos e o experimento para avaliação do crescimento bacteriano na presença do extrato. A turbidez foi medida com o auxílio de um espectrofotômetro, no comprimento de onda de 600 nm, antes e após 24 horas de incubação à 37 ºC. O procedimento forneceu a Densidade Ótica, do qual possibilitou a identificação da inibição microbiana. Para análise estatística foi utilizado o Teste t de Student. O Extrato de Cranberry apresentou atividade antimicrobiana sobre as bactérias Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Serratia marscecens e Enterococcus faecalis (p < 0,05), confirmando seu efeito benéfico em infecções urinárias. No entanto, não teve efeito inibitório significativo sobre Pseudomonas aeruginosa, Proteus mirabilis e Enterococcus faecium (p > 0,05).


Author(s):  
Hamza Mohamed Ahmed ◽  
Ashraf Mahmoud Ramadhani ◽  
Ibrahim Yaagoub Erwa ◽  
Omer Adam Omer Ishag ◽  
Mohamed Bosharh Saeed

cinnamon dating from 1000 AD when it was firstly recorded in English due to its important as aroma and as herbs. The aim of this study was to investigate phytochemicals constitutes, chemical composition and antimicrobial activity of the essential oil of commercial samples of Cinnamon verum bark. The essential oil was extracted by hydrodistillation, while the crude extracts were prepared by three different solvents methanol (70%), acetone and aqueous. Phytochemical screening of crude extracts was performed using standard methods. The essential oil was subjected to GC-MS analysis and tested against Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa, Eschericchia coli and Candida albicans. The obtained results indicated the presence of alkaloids, flavonoids, coumarin, tannins, terpenoids, saponin, glycoside, anthrocyanin and phenolic compounds in the methanolic, aqoueous and acetone extracts of C. verum bark; while the major components of the extracted essential oil of C. verum bark were cinnamaldehyde (85.50%), stigmasterol (3.69%), Cadinene (1.37%), (E)-cinnamaldehyde (1.35%), alpha-amorphene (1.33%), hydrocinnamaldehyde (1.28%), alpha-cubebene (1.25) and ergosterol (1.09%) respectively. The antimicrobial activity result indicated the high activity of the extracted essential oil against all tested microorganisms at high concentration; except in S. typhimurium and C. albicans at concentrations of 25% and 12.5% no activity was noticed. Based in our obtained results the essential oil of C. verum bark had high potential as antimicrobial agent, therefore, recommended for more advanced studies to be conducted on this abundant plant as natural source of antibiotics.


2018 ◽  
Vol 5 ◽  
pp. 69-76
Author(s):  
Mamata Adhikari ◽  
Anil Kumar Sah ◽  
Dev Raj Joshi

Objectives: In order to investigate alternate therapeutic option, this study was carried out to assess the in vitro antibacterial activity of gel extract of Aloe barbadensis against multiple antibiotic resistant Pseudomonas aeruginosa isolated from wound specimens. Methods: A total of 180 different wound specimens collected in a hospital, were subjected to isolate and identify P. aeruginosa by cultural methods. Antibiotic susceptibility testing was done by Kirby- Bauer disc diffusion method to screen multidrug resistant isolates. A. barbadensis extracts were prepared using aqueous and organic solvents and their in vitro inhibitory action was evaluated by agar well diffusion methods. Results: Out of total, 38 (21.1%) of the wound specimens showed the occurrence of P. aeruginosa, among which 15 (39%) isolates were multi-drug resistant. Organic extracts of various concentrations (0.2 - 0.8 v/v %) inhibited 66.7% of MDR and all non-MDR (n = 23) P. aeruginosa with zone of inhibition ranging from 9.5 ±1.0 to 21.3 ± 2.2 mm but not by aqueous extract. A positive Pearson’s correlation (r=0.983) was found between antibacterial effect and concentrations of the extracts. The antibacterial activity of organic extracts was statistically associated with antibiotic resistance profile of the organism (p<0.05). Conclusion: Organic extracts of A. barbadensis revealed variable in vitro inhibitory action against both MDR and non-MDR P. aeruginosa isolated from wound specimens. Although further confirmation is needed, aloe gel extract may be applied as an alternate treatment option.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Pavithra L. Jayatilake ◽  
Helani Munasinghe

Endophytic and rhizosphere fungi are understood to be aiding the host plant to overcome a range of biotic and abiotic stresses (nutrition depletion, droughts, etc.) hence, they remain to be reservoirs of plethora of natural products with immense use. Consequently, this investigation of endophytic and rhizosphere fungi isolated from Mikania cordata (a perennial vine that is well established in Sri Lanka) for their antimicrobial properties was performed with the aim of future derivation of potential beneficial pharmaceutical products. Leaves, twigs, and roots of M. cordata were utilized to isolate a total of 9 endophytic fungi out of which the highest amount (44%) accounted was from the twigs. A sample of the immediate layer of soil adhering to the root of M. cordata was utilized to isolate 15 rhizosphere fungi. Fusarium equiseti and Phoma medicaginis were endophytes that were identified based on colony and molecular characteristics. The broad spectrum of antimicrobial activity depicted by F. equiseti (MK517551) was found to be significantly greater (p≤0.05, inhibitory against Bacillus cereus ATCC 11778, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) than P. medicaginis (MK517550) (inhibitory against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) as assessed using the Kirby-Bauer disk diffusion method. Trichoderma virens and Trichoderma asperellum were rhizospere fungi that exhibited remarkable antimicrobial properties against the test pathogens chosen for the study. T. asperellum indicated significantly greater bioactivity against all four bacterial pathogens and Candida albicans ATCC 10231 under study. The ranges of minimum inhibitory concentrations (MICs) of the fungi depicting antimicrobial properties were determined. The results obtained suggest that F. equiseti, P. medicaginis, T. asperellum, and T. virens of M. cordata harness bioprospective values as natural drug candidates. This is the first report on isolation and evaluation of the antimicrobial properties of endophytic and rhizosphere fungi of Mikania cordata.


Author(s):  
Miladys Esther Torrenegra Alarcón ◽  
Nerlis Paola Pájaro ◽  
Glicerio León Méndez

Se evaluó la actividad antibacteriana in vitro de aceites esenciales de diferentes especiesdel género Citrus frente a cepas ATCC de Staphylococcus aureus, Staphylococcus epidermidis,Klebsiella pneumoniae, Pseudomonas aeruginosa y Escherichia coli, determinandola concentración mínima inhibitoria (CMI) y la concentración mínima bactericida(CMB). Las bacterias se replicaron en medios de agar y caldos específicos. Se determinóel momento de máxima densidad óptica (DO620) para emplearlo como tiempode incubación; luego se hicieron pruebas de evaluación de sensibilidad con la exposiciónde las cepas a concentraciones a 1000 g/mL del extracto en caldo. Para solubilizarse empleó dimetilsulfóxido (DMSO) al 1%. Posteriormente, se le determinó laconcentración mínima inhibitoria mediante metodologías de microdilución en caldoy la concentración mínima bactericida. Encontrándose una actividad de los aceitesesenciales del género Citrus, con valores de CMI ≥ 600 mg/mL frente a S. aureus,S. epidermidis, K. pneumoniae, P. aeruginosa y E. coli. En función a los resultados obtenidos,se concluye que las diferentes especies del género Citrus son consideradas comopromisorias para el control del componente bacteriano.


2006 ◽  
Vol 50 (2) ◽  
pp. 806-809 ◽  
Author(s):  
Giuseppantonio Maisetta ◽  
Giovanna Batoni ◽  
Semih Esin ◽  
Walter Florio ◽  
Daria Bottai ◽  
...  

ABSTRACT The antimicrobial activity of human β-defensin 3 (hBD-3) against multidrug-resistant clinical isolates of Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Acinetobacter baumannii was evaluated. A fast bactericidal effect (within 20 min) against all bacterial strains tested was observed. The presence of 20% human serum abolished the bactericidal activity of hBD-3 against gram-negative strains and reduced the activity of the peptide against gram-positive strains.


Sign in / Sign up

Export Citation Format

Share Document